Do you want to publish a course? Click here

Pre-derivations and description of non-strongly nilpotent filiform Leibniz algebras

295   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we investigate pre-derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three non-intersected families. We describe the pre-derivation of filiform Leibniz algebras for the first and second families. We found sufficient conditions under which filiform Leibniz algebras are strongly nilpotent. Moreover, for the first and second families, we give the description of characteristically nilpotent algebras which are non-strongly nilpotent.



rate research

Read More

In this paper we investigate the derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into three non-intersected families. We found sufficient conditions under which filiform Leibniz algebras of the first family are characteristically nilpotent. Moreover, for the first family we classify non-characteristically nilpotent algebras by means of Catalan numbers. In addition, for the rest two families of filiform Leibniz algebras we describe non-characteristically nilpotent algebras, i.e., those filiform Leibniz algebras which lie in the complementary set to those characteristically nilpotent.
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform non-Lie Leibniz algebras are described up to isomorphism. It is shown that $k$-dimensional central extensions ($kgeq 5$) of these algebras are split.
The descriptions (up to isomorphism) of naturally graded $p$-filiform Leibniz algebras and $p$-filiform ($pleq 3$) Leibniz algebras of maximum length are known. In this paper we study the gradation of maximum length for $p$-filiform Leibniz algebras. The present work aims at the classification of complex $p$-filiform ($p geq 4$) Leibniz algebras of maximum length.
This work completes the study of the solvable Leibniz algebras, more precisely, it completes the classification of the $3$-filiform Leibniz algebras of maximum length cite{3-filiform}. Moreover, due to the good structure of the algebras of maximum length, we also tackle some of their cohomological properties. Our main tools are the previous result of Cabezas and Pastor cite{Pastor}, the construction of appropriate homogeneous basis in the considered connected gradation and the computational support provided by the two programs implemented in the software textit{Mathematica}.
In this paper we investigate Leibniz algebras whose quotient Lie algebra is a naturally graded filiform Lie algebra $n_{n,1}.$ We introduce a Fock module for the algebra $n_{n,1}$ and provide classification of Leibniz algebras $L$ whose corresponding Lie algebra $L/I$ is the algebra $n_{n,1}$ with condition that the ideal $I$ is a Fock $n_{n,1}$-module, where $I$ is the ideal generated by squares of elements from $L$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا