No Arabic abstract
Spin-orbit torques (SOT) in thin film heterostructures originate from strong spin-orbit interactions (SOI) that, in the bulk, generate a spin current as the result of extrinsic spin-dependent, skew or/and side-jump, scattering, or in the intrinsic case due to Berry curvature in the conduction band. While most SOT studies have focused on materials with heavy metal components, the oxide perovskite SrRuO3 has been predicted to have a pronounced Berry curvature. Through quantification of its spin current by the SOT exerted on an adjacent Co ferromagnetic layer, we determine that SrRuO3 has a strongly temperature (T) dependent spin Hall conductivity which becomes particularly high at low T, e.g. sigma_{SH} geqslant (hbar/2e)3x10^{5} Omega^{-1}m^{-1} at 60 K. Below the SrRuO3 ferromagnetic transition, non-standard SOT components develop associated with the magnetic characteristics of the oxide, but these do not dominate as with spin currents from a conventional ferromagnet. Our results establish a new approach for the study of SOI in epitaxial conducting oxide heterostructures and confirm SrRuO3 as a promising candidate material for achieving new and enhanced spintronics functionalities.
We present an extension of the relativistic electron transport theory for the standard (charge) conductivity tensor of random alloys within the tight-binding linear muffin-tin orbital method to the so-called spin-dependent conductivity tensor, which describes the Kubo linear response of spin currents to external electric fields. The approach is based on effective charge- and spin-current operators, that correspond to intersite electron transport and that are nonrandom, which simplifies the configuration averaging by means of the coherent potential approximation. Special attention is paid to the Fermi sea term of the spin-dependent conductivity tensor, which contains a nonzero incoherent part, in contrast to the standard conductivity tensor. The developed formalism is applied to the spin Hall effect in binary random nonmagnetic alloys, both on a model level and for Pt-based alloys with an fcc structure. We show that the spin Hall conductivity consists of three contributions (one intrinsic and two extrinsic) which exhibit different concentration dependences in the dilute limit of an alloy. Results for selected Pt alloys (Pt-Re, Pt-Ta) lead to the spin Hall angles around 0.2; these sizable values are obtained for compositions that belong to thermodynamically equilibrium phases. These alloys can thus be considered as an alternative to other systems for efficient charge to spin conversion, which are often metastable crystalline or amorphous alloys.
5d transition metal Pt is the canonical spin Hall material for efficient generation of spin-orbit torques (SOTs) in Pt/ferromagnetic layer (FM) heterostructures. However, for a long while with tremendous engineering endeavors, the damping-like SOT efficiencies (${xi}_{DL}$) of Pt and Pt alloys are still limited to ${xi}_{DL}$<0.5. Here we present that with proper alloying elements, particularly 3d transition metals V and Cr, the strength of the high spin Hall conductivity of Pt (${sigma}_{SH}{sim}6.45{times}10^{5}({hbar}/2e){Omega}^{-1}{cdot} m^{-1}$) can be developed. Especially for the Cr-doped case, an extremely high ${xi}_{DL}{sim}0.9$ in a Pt$_{0.69}$Cr$_{0.31}$/Co device can be achieved with a moderate Pt$_{0.69}$Cr$_{0.31}$ resistivity of ${rho}_{xx}{sim}133 {mu}{Omega}{cdot}cm$. A low critical SOT-driven switching current density of $J_{c}{sim}3.16{times}10^{6} A{cdot}cm^{-2}$ is also demonstrated. The damping constant (${alpha}$) of Pt$_{0.69}$Cr$_{0.31}$/FM structure is also found to be reduced to 0.052 from the pure Pt/FM case of 0.078. The overall high ${sigma}_{SH}$, giant ${xi}_{DL}$, moderate ${rho}_{xx}$, and reduced ${alpha}$ of such Pt-Cr/FM heterostructure makes it promising for versatile extremely low power consumption SOT memory applications.
Atomically thin ferromagnetic and conducting electron systems are highly desired for spintronics, because they can be controlled with both magnetic and electric fields. We present (SrRuO3)1-(SrTiO3)5 superlattices and single-unit-cell-thick SrRuO3 samples that are capped with SrTiO3. We achieve samples of exceptional quality. In these samples, the electron systems comprise only a single RuO2 plane. We observe conductivity down to 50 mK, a ferromagnetic state with a Curie temperature of 25 K, and signals of magnetism persisting up to approximately 100 K.
Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120 {mu}W cm). At 11% Ta concentration, a remarkably high spin Hall angle value of - 0.3 is achieved with a low longitudinal resistivity 100 {mu}W cm, which could lead to a very low power consumption for this W-based alloy. This work demonstrates sputter-deposited W-Ta alloys could be a promising material for power-efficient spin current generation.
The recent observation of Weyl fermions in the itinerant 4d ferromagnetic perovskite SrRuO3 points to this material being a good platform for exploring novel physics related to a pair of Weyl nodes in epitaxial heterostructures. In this letter, we report the thickness-dependent magnetotransport properties of ultra-high-quality epitaxial SrRuO3 films grown under optimized conditions on SrTiO3 substrates. Signatures of Weyl fermion transport, i.e., unsaturated linear positive magnetoresistance accompanied by a quantum oscillation having a {pi} Berry phase, were observed in films with thicknesses as small as 10 nm. Residual resistivity increased with decreasing film thickness, indicating disorder near the interface between SrRuO3 and the SrTiO3 substrate. Since this disorder affects the magnetic and electrical properties of the films, the Curie temperature decreases and the coercive field increases with decreasing thickness. Thickness-dependent magnetotransport measurements revealed that the threshold residual resistivity ratio (RRR) to observe Weyl fermion transport is 21. These results provide guidelines for realizing quantum transport of Weyl fermions in SrRuO3 near heterointerfaces.