Do you want to publish a course? Click here

A fast radio burst with a low dispersion measure

80   0   0.0 ( 0 )
 Added by Emily Petroff
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fast radio bursts (FRBs) are millisecond pulses of radio emission of seemingly extragalactic origin. More than 50 FRBs have now been detected, with only one seen to repeat. Here we present a new FRB discovery, FRB 110214, which was detected in the high latitude portion of the High Time Resolution Universe South survey at the Parkes telescope. FRB 110214 has one of the lowest dispersion measures of any known FRB (DM = 168.9$pm$0.5 pc cm$^{-3}$), and was detected in two beams of the Parkes multi-beam receiver. A triangulation of the burst origin on the sky identified three possible regions in the beam pattern where it may have originated, all in sidelobes of the primary detection beam. Depending on the true location of the burst the intrinsic fluence is estimated to fall in the range of 50 -- 2000 Jy ms, making FRB 110214 one of the highest-fluence FRBs detected with the Parkes telescope. No repeating pulses were seen in almost 100 hours of follow-up observations with the Parkes telescope down to a limiting fluence of 0.3 Jy ms for a 2-ms pulse. Similar low-DM, ultra-bright FRBs may be detected in telescope sidelobes in the future, making careful modeling of multi-beam instrument beam patterns of utmost importance for upcoming FRB surveys.



rate research

Read More

We compare the dispersion measure (DM) statistics of FRBs detected by the ASKAP and Parkes radio telescopes. We jointly model their DM distributions, exploiting the fact that the telescopes have different survey fluence limits but likely sample the same underlying population. After accounting for the effects of instrumental temporal and spectral resolution of each sample, we find that a fit between the modelled and observed DM distribution, using identical population parameters, provides a good fit to both distributions. Assuming a one-to-one mapping between DM and redshift for an homogeneous intergalactic medium (IGM), we determine the best-fit parameters of the population spectral index, $hat{alpha}$, and the power-law index of the burst energy distribution, $hat{gamma}$, for different redshift evolutionary models. Whilst the overall best-fit model yields $hat{alpha}=2.2_{-1.0}^{+0.7}$ and $hat{gamma}=2.0_{-0.1}^{+0.3}$, for a strong redshift evolutionary model, when we admit the further constraint of $alpha=1.5$ we favour the best fit $hat{gamma}=1.5 pm 0.2$ and the case of no redshift evolution. Moreover, we find no evidence that the FRB population evolves faster than linearly with respect to the star formation rate over the DM (redshift) range for the sampled population.
We report on the discovery of a new fast radio burst, FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6$pm$0.8 pc cm^{-3}, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming the burst was at beam center of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66^{circ}, 5.28^{circ}, 25 degrees away from the Galactic Center. The burst was found to be 43$pm$5% linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m^{-2} (95% confidence level), consistent with zero. The burst was followed-up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 hours of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star.
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxys redshift to be $z=0.492pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $Omega_{mathrm{IGM}}=4.9 pm 1.3%$, in agreement with the expectation from WMAP, and including all of the so-called missing baryons. The $sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.
101 - D.Li , P.Wang , W.W.Zhu 2021
The event rate, energy distribution, and time-domain behaviour of repeating fast radio bursts (FRBs) contains essential information regarding their physical nature and central engine, which are as yet unknown. As the first precisely-localized source, FRB 121102 has been extensively observed and shows non-Poisson clustering of bursts over time and a power-law energy distribution. However, the extent of the energy distribution towards the fainter end was not known. Here we report the detection of 1652 independent bursts with a peak burst rate of 122~hr^{-1}, in 59.5 hours spanning 47 days. A peak in the isotropic equivalent energy distribution is found to be ~4.8 x 10^{37} erg at 1.25~GHz, below which the detection of bursts is suppressed. The burst energy distribution is bimodal, and well characterized by a combination of a log-normal function and a generalized Cauchy function. The large number of bursts in hour-long spans allow sensitive periodicity searches between 1 ms and 1000 s. The non-detection of any periodicity or quasi-periodicity poses challenges for models involving a single rotating compact object. The high burst rate also implies that FRBs must be generated with a high radiative efficiency, disfavoring emission mechanisms with large energy requirements or contrived triggering conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا