No Arabic abstract
We report on the discovery of a new fast radio burst, FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6$pm$0.8 pc cm^{-3}, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming the burst was at beam center of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66^{circ}, 5.28^{circ}, 25 degrees away from the Galactic Center. The burst was found to be 43$pm$5% linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m^{-2} (95% confidence level), consistent with zero. The burst was followed-up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 hours of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
We investigate whether the sky rate of Fast Radio Bursts depends on Galactic latitude using the first catalog of Fast Radio Bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project. We first select CHIME/FRB events above a specified sensitivity threshold in consideration of the radiometer equation, and then compare these detections with the expected cumulative time-weighted exposure using Anderson-Darling and Kolmogrov-Smirnov tests. These tests are consistent with the null hypothesis that FRBs are distributed without Galactic latitude dependence ($p$-values distributed from 0.05 to 0.99, depending on completeness threshold). Additionally, we compare rates in intermediate latitudes ($|b| < 15^circ$) with high latitudes using a Bayesian framework, treating the question as a biased coin-flipping experiment -- again for a range of completeness thresholds. In these tests the isotropic model is significantly favored (Bayes factors ranging from 3.3 to 14.2). Our results are consistent with FRBs originating from an isotropic population of extragalactic sources.
Fast radio bursts (FRBs) are millisecond pulses of radio emission of seemingly extragalactic origin. More than 50 FRBs have now been detected, with only one seen to repeat. Here we present a new FRB discovery, FRB 110214, which was detected in the high latitude portion of the High Time Resolution Universe South survey at the Parkes telescope. FRB 110214 has one of the lowest dispersion measures of any known FRB (DM = 168.9$pm$0.5 pc cm$^{-3}$), and was detected in two beams of the Parkes multi-beam receiver. A triangulation of the burst origin on the sky identified three possible regions in the beam pattern where it may have originated, all in sidelobes of the primary detection beam. Depending on the true location of the burst the intrinsic fluence is estimated to fall in the range of 50 -- 2000 Jy ms, making FRB 110214 one of the highest-fluence FRBs detected with the Parkes telescope. No repeating pulses were seen in almost 100 hours of follow-up observations with the Parkes telescope down to a limiting fluence of 0.3 Jy ms for a 2-ms pulse. Similar low-DM, ultra-bright FRBs may be detected in telescope sidelobes in the future, making careful modeling of multi-beam instrument beam patterns of utmost importance for upcoming FRB surveys.
Fast Radio Bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measures (i.e. integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of the fast radio bursts has led several authors to hypothesise that they originate in cataclysmic astrophysical events. Here we report the detection of ten additional bursts from the direction of FRB121102, using the 305-m Arecibo telescope. These new bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or shorter. While there may be multiple physical origins for the population of fast radio bursts, the repeat bursts with high dispersion measure and variable spectra specifically seen from FRB121102 support models that propose an origin in a young, highly magnetised, extragalactic neutron star.
Fast radio bursts are bright, millisecond-scale radio flashes of yet unknown physical origin. Recently, their extragalactic nature has been demonstrated and an increasing number of the sources have been found to repeat. Young, highly magnetized, isolated neutron stars - magnetars - have been suggested as the most promising candidates for fast radio burst progenitors owing to their energetics and high X-ray flaring activity. Here we report the detection with the Konus-Wind of a hard X-ray event of April 28, 2020, temporarily coincident with a bright, two-peak radio burst from the Galactic magnetar SGR~1935+2154 with properties remarkably similar to those of fast radio bursts. We show that two peaks of the double-peaked X-ray burst coincide in time with the radio peaks, confirming that the X-ray and radio emission most likely have a common origin. Thus, this is the first simultaneous detection of a fast radio burst from a Galactic magnetar and its high-energy counterpart. The total energy emitted in X-rays in this burst is typical of bright short magnetar bursts, but an unusual hardness of its energy spectrum strongly distinguish the April 28 event among multiple ordinary flares detected from SGR~1935+2154 previously. This, and a recent non-detection of radio emission from about one hundred typical soft bursts from SGR 1935+2154 favors the idea that bright, FRB-like magnetar signals are associated with rare, hard-spectrum X-ray bursts, which implied rate ($sim$ 0.04 yr$^{-1}$ magnetar$^{-1}$) appears consistent with the rate estimate of SGR 1935+2154-like radio bursts (0.007 - 0.04 yr$^{-1}$ magnetar$^{-1}$).
In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in pinpointing their celestial coordinates. Here we present the discovery of a fast radio burst and the identification of a fading radio transient lasting $sim 6$ days after the event, which we use to identify the host galaxy; we measure the galaxys redshift to be $z=0.492pm0.008$. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionised baryons in the intergalactic medium of $Omega_{mathrm{IGM}}=4.9 pm 1.3%$, in agreement with the expectation from WMAP, and including all of the so-called missing baryons. The $sim6$-day transient is largely consistent with a short gamma-ray burst radio afterglow, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting there are at least two classes of bursts.