No Arabic abstract
This paper proposes a novel algorithm for image phase retrieval, i.e., for recovering complex-valued images from the amplitudes of noisy linear combinations (often the Fourier transform) of the sought complex images. The algorithm is developed using the alternating projection framework and is aimed to obtain high performance for heavily noisy (Poissonian or Gaussian) observations. The estimation of the target images is reformulated as a sparse regression, often termed sparse coding, in the complex domain. This is accomplished by learning a complex domain dictionary from the data it represents via matrix factorization with sparsity constraints on the code (i.e., the regression coefficients). Our algorithm, termed dictionary learning phase retrieval (DLPR), jointly learns the referred to dictionary and reconstructs the unknown target image. The effectiveness of DLPR is illustrated through experiments conducted on complex images, simulated and real, where it shows noticeable advantages over the state-of-the-art competitors.
Phase retrieval aims at reconstructing unknown signals from magnitude measurements of linear mixtures. In this paper, we consider the phase retrieval with dictionary learning problem, which includes an additional prior information that the measured signal admits a sparse representation over an unknown dictionary. The task is to jointly estimate the dictionary and the sparse representation from magnitude-only measurements. To this end, we study two complementary formulations and propose efficient parallel algorithms based on the successive convex approximation framework. The first algorithm is termed compact-SCAphase and is preferable in the case of less diverse mixture models. It employs a compact formulation that avoids the use of auxiliary variables. The proposed algorithm is highly scalable and has reduced parameter tuning cost. The second algorithm, referred to as SCAphase, uses auxiliary variables and is favorable in the case of highly diverse mixture models. It also renders simple incorporation of additional side constraints. The performance of both methods is evaluated when applied to blind sparse channel estimation from subband magnitude measurements in a multi-antenna random access network. Simulation results demonstrate the efficiency of the proposed techniques compared to state-of-the-art methods.
Signal recovery from nonlinear measurements involves solving an iterative optimization problem. In this paper, we present a framework to optimize the sensing parameters to improve the quality of the signal recovered by the given iterative method. In particular, we learn illumination patterns to recover signals from coded diffraction patterns using a fixed-cost alternating minimization-based phase retrieval method. Coded diffraction phase retrieval is a physically realistic system in which the signal is first modulated by a sequence of codes before the sensor records its Fourier amplitude. We represent the phase retrieval method as an unrolled network with a fixed number of layers and minimize the recovery error by optimizing over the measurement parameters. Since the number of iterations/layers are fixed, the recovery incurs a fixed cost. We present extensive simulation results on a variety of datasets under different conditions and a comparison with existing methods. Our results demonstrate that the proposed method provides near-perfect reconstruction using patterns learned with a small number of training images. Our proposed method provides significant improvements over existing methods both in terms of accuracy and speed.
In this paper, we propose the SPR (sparse phase retrieval) method, which is a new phase retrieval method for coherent x-ray diffraction imaging (CXDI). Conventional phase retrieval methods effectively solve the problem for high signal-to-noise ratio measurements, but would not be sufficient for single biomolecular imaging which is expected to be realized with femto-second x-ray free electron laser pulses. The SPR method is based on the Bayesian statistics. It does not need to set the object boundary constraint that is required by the commonly used hybrid input-output (HIO) method, instead a prior distribution is defined with an exponential distribution and used for the estimation. Simulation results demonstrate that the proposed method reconstructs the electron density under a noisy condition even some central pixels are masked.
This paper studies early-stopped mirror descent applied to noisy sparse phase retrieval, which is the problem of recovering a $k$-sparse signal $mathbf{x}^starinmathbb{R}^n$ from a set of quadratic Gaussian measurements corrupted by sub-exponential noise. We consider the (non-convex) unregularized empirical risk minimization problem and show that early-stopped mirror descent, when equipped with the hyperbolic entropy mirror map and proper initialization, achieves a nearly minimax-optimal rate of convergence, provided the sample size is at least of order $k^2$ (modulo logarithmic term) and the minimum (in modulus) non-zero entry of the signal is on the order of $|mathbf{x}^star|_2/sqrt{k}$. Our theory leads to a simple algorithm that does not rely on explicit regularization or thresholding steps to promote sparsity. More generally, our results establish a connection between mirror descent and sparsity in the non-convex problem of noisy sparse phase retrieval, adding to the literature on early stopping that has mostly focused on non-sparse, Euclidean, and convex settings via gradient descent. Our proof combines a potential-based analysis of mirror descent with a quantitative control on a variational coherence property that we establish along the path of mirror descent, up to a prescribed stopping time.
Coherent diffraction imaging (CDI) is high-resolution lensless microscopy that has been applied to image a wide range of specimens using synchrotron radiation, X-ray free electron lasers, high harmonic generation, soft X-ray laser and electrons. Despite these rapid advances, it remains a challenge to reconstruct fine features in weakly scattering objects such as biological specimens from noisy data. Here we present an effective iterative algorithm, termed oversampling smoothness (OSS), for phase retrieval of noisy diffraction intensities. OSS exploits the correlation information among the pixels or voxels in the region outside of a support in real space. By properly applying spatial frequency filters to the pixels or voxels outside the support at different stage of the iterative process (i.e. a smoothness constraint), OSS finds a balance between the hybrid input-output (HIO) and error reduction (ER) algorithms to search for a global minimum in solution space, while reducing the oscillations in the reconstruction. Both our numerical simulations with Poisson noise and experimental data from a biological cell indicate that OSS consistently outperforms the HIO, ER-HIO and noise robust (NR)-HIO algorithms at all noise levels in terms of accuracy and consistency of the reconstructions. We expect OSS to find application in the rapidly growing CDI field as well as other disciplines where phase retrieval from noisy Fourier magnitudes is needed.