Do you want to publish a course? Click here

Tight Competitive Ratios of Classic Matching Algorithms in the Fully Online Model

218   0   0.0 ( 0 )
 Added by Zhihao Gavin Tang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Huang et al.~(STOC 2018) introduced the fully online matching problem, a generalization of the classic online bipartite matching problem in that it allows all vertices to arrive online and considers general graphs. They showed that the ranking algorithm by Karp et al.~(STOC 1990) is strictly better than $0.5$-competitive and the problem is strictly harder than the online bipartite matching problem in that no algorithms can be $(1-1/e)$-competitive. This paper pins down two tight competitive ratios of classic algorithms for the fully online matching problem. For the fractional version of the problem, we show that a natural instantiation of the water-filling algorithm is $2-sqrt{2} approx 0.585$-competitive, together with a matching hardness result. Interestingly, our hardness result applies to arbitrary algorithms in the edge-arrival models of the online matching problem, improving the state-of-art $frac{1}{1+ln 2} approx 0.5906$ upper bound. For integral algorithms, we show a tight competitive ratio of $approx 0.567$ for the ranking algorithm on bipartite graphs, matching a hardness result by Huang et al. (STOC 2018).



rate research

Read More

The design of online algorithms has tended to focus on algorithms with worst-case guarantees, e.g., bounds on the competitive ratio. However, it is well-known that such algorithms are often overly pessimistic, performing sub-optimally on non-worst-case inputs. In this paper, we develop an approach for data-driven design of online algorithms that maintain near-optimal worst-case guarantees while also performing learning in order to perform well for typical inputs. Our approach is to identify policy classes that admit global worst-case guarantees, and then perform learning using historical data within the policy classes. We demonstrate the approach in the context of two classical problems, online knapsack and online set cover, proving competitive bounds for rich policy classes in each case. Additionally, we illustrate the practical implications via a case study on electric vehicle charging.
95 - Bo Sun , Ali Zeynali , Tongxin Li 2020
We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging.
In multi-capacity ridesharing, multiple requests (e.g., customers, food items, parcels) with different origin and destination pairs travel in one resource. In recent years, online multi-capacity ridesharing services (i.e., where assignments are made online) like Uber-pool, foodpanda, and on-demand shuttles have become hugely popular in transportation, food delivery, logistics and other domains. This is because multi-capacity ridesharing services benefit all parties involved { the customers (due to lower costs), the drivers (due to higher revenues) and the matching platforms (due to higher revenues per vehicle/resource). Most importantly these services can also help reduce carbon emissions (due to fewer vehicles on roads). Online multi-capacity ridesharing is extremely challenging as the underlying matching graph is no longer bipartite (as in the unit-capacity case) but a tripartite graph with resources (e.g., taxis, cars), requests and request groups (combinations of requests that can travel together). The desired matching between resources and request groups is constrained by the edges between requests and request groups in this tripartite graph (i.e., a request can be part of at most one request group in the final assignment). While there have been myopic heuristic approaches employed for solving the online multi-capacity ridesharing problem, they do not provide any guarantees on the solution quality. To that end, this paper presents the first approach with bounds on the competitive ratio for online multi-capacity ridesharing (when resources rejoin the system at their initial location/depot after serving a group of requests).
We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of a tree. This model is based on a simple structure for decomposing graphs, previously known under several names including elimination trees, vertex rankings, and tubings. The model is equivalent to the classical binary search tree model exactly when the underlying tree is a path. We describe an online $O(log log n)$-competitive search tree data structure in this model, matching the best known competitive ratio of binary search trees. Our method is inspired by Tango trees, an online binary search tree algorithm, but critically needs several new notions including one which we call Steiner-closed search trees, which may be of independent interest. Moreover our technique is based on a novel use of two levels of decomposition, first from search space to a set of Steiner-closed trees, and secondly from these trees into paths.
Online algorithms make decisions based on past inputs. In general, the decision may depend on the entire history of inputs. If many computers run the same online algorithm with the same input stream but are started at different times, they do not necessarily make consistent decisions. In this work we introduce time-local online algorithms. These are online algorithms where the output at a given time only depends on $T = O(1)$ latest inputs. The use of (deterministic) time-local algorithms in a distributed setting automatically leads to globally consistent decisions. Our key observation is that time-local online algorithms (in which the output at a given time only depends on local inputs in the temporal dimension) are closely connected to local distributed graph algorithms (in which the output of a given node only depends on local inputs in the spatial dimension). This makes it possible to interpret prior work on distributed graph algorithms from the perspective of online algorithms. We describe an algorithm synthesis method that one can use to design optimal time-local online algorithms for small values of $T$. We demonstrate the power of the technique in the context of a variant of the online file migration problem, and show that e.g. for two nodes and unit migration costs there exists a $3$-competitive time-local algorithm with horizon $T=4$, while no deterministic online algorithm (in the classic sense) can do better. We also derive upper and lower bounds for a more general version of the problem; we show that there is a $6$-competitive deterministic time-local algorithm and a $2.62$-competitive randomized time-local algorithm for any migration cost $alpha ge 1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا