Do you want to publish a course? Click here

Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard

92   0   0.0 ( 0 )
 Added by Pete Riley
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accurate forecasting of the properties of coronal mass ejections as they approach Earth is now recognized as an important strategic objective for both NOAA and NASA. The time of arrival of such events is a key parameter, one that had been anticipated to be relatively straightforward to constrain. In this study, we analyze forecasts submitted to the Community Coordinated Modeling Center (CCMC) at NASAs Goddard Space Flight Center over the last six years to answer the following questions: (1) How well do these models forecast the arrival time of CME-driven shocks? (2) What are the uncertainties associated with these forecasts? (3) Which model(s) perform best? (4) Have the models become more accurate during the past six years? We analyze all forecasts made by 32 models from 2013 through mid 2018, and additionally focus on 28 events all of which were forecasted by six models. We find that the models are generally able to predict CME-shock arrival times -- in an average sense -- to within 10 hours, but with standard deviations often exceeding 20 hours. The best performers, on the other hand, maintained a mean error (bias) of -1 hour, a mean absolute error of 13 hours, and a precision (s.d.) of 15 hours. Finally, there is no evidence that the forecasts have become more accurate during this interval. We discuss the intrinsic simplifications of the various models analyzed, the limitations of this investigation, and suggest possible paths to improve these forecasts in the future.



rate research

Read More

The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model CME propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME leading edge measurements at STEREO-A, STEREO-B, and Earth (Wind and ACE) for simulations completed between March 2010-December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 +/- 0.9 hours, with a tendency to early prediction error of -4.0 hours. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 hours in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.
237 - N. Lugaz 2013
We report on a numerical investigation of two coronal mass ejections (CMEs) which interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90 degrees from one simulation to the next. Each magneto-hydrodynamic (MHD) simulation is performed in three dimensions (3-D) with the Space Weather Modeling Framework (SWMF) in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field (IMF) determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180 degrees. Due to reconnection, the second CME only appears as an extended tail, and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.
Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earths magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine the important geometrical and physical CME properties. In many instances, there is disagreement between such different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. Here, we compare three methods based on different assumptions for measurements of thirteen CMEs by the Wind spacecraft from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php due to their simplicity in terms of 1) small expansion speed throughout the CME and 2) little asymmetry in the magnetic field profile. This makes these thirteen events ideal candidates to compare codes that do not include expansion nor distortion. We find that, for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six out of the 13 events. Using the Grad-Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular-cylindrical non-force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a pre-condition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts at reconciling in situ and remote-sensing views of CMEs must take in consideration the compatibility of the different models with specific CME structures to better reproduce flux ropes.
To predict whether a coronal mass ejection (CME) will impact Earth, the effects of the background on the CMEs trajectory must be taken into account. We develop a model, ForeCAT (Forecasting a CMEs Altered Trajectory), of CME deflection due to magnetic forces. ForeCAT includes CME expansion, a three-part propagation model, and the effects of drag on the CMEs deflection. Given the background solar wind conditions, the launch site of the CME, and the properties of the CME (mass, final propagation speed, initial radius, and initial magnetic strength), ForeCAT predicts the deflection of the CME. Two different magnetic backgrounds are considered: a scaled background based on type II radio burst profiles and a Potential Field Source Surface (PFSS) background. For a scaled background where the CME is launched from an active region located between a CH and streamer region the strong magnetic gradients cause a deflection of 8.1 degrees in latitude and 26.4 degrees in longitude for a 1e15 g CME propagating out to 1 AU. Using the PFSS background, which captures the variation of the streamer belt position with height, leads to a deflection of 1.6 degrees in latitude and 4.1 degrees in longitude for the control case. Varying the CMEs input parameters within observed ranges leads to the majority of CMEs reaching the streamer belt within the first few solar radii. For these specific backgrounds, the streamer belt acts like a potential well that forces the CME into an equilibrium angular position.
Our knowledge of the properties of Coronal Mass Ejections (CMEs) in the inner heliosphere is constrained by the relative lack of plasma observations between Sun and 1 AU. In this work, we present a comprehensive catalog of 47 CMEs measured in situ measurements by two or more radially aligned spacecraft (MESSENGER, Venus Express, STEREO or Wind/ACE). We estimate the CME impact speeds at Mercury and Venus using a drag-based model and present an average propagation profile of CMEs (speed and deceleration/acceleration) in the inner heliosphere. We find that CME deceleration continues past Mercurys orbit but most of the deceleration occurs between the Sun and Mercury. We examine the exponential decrease of the maximum magnetic field strength in the CME with heliocentric distance using two approaches: a modified statistical method and analysis from individual conjunction events. Findings from both the approaches are on average consistent with previous studies but show significant event-to-event variability. We also find the expansion of the CME sheath to be well fit by a linear function. However, we observe the average sheath duration and its increase to be fairly independent of the initial CME speed, contradicting commonly held knowledge that slower CMEs drive larger sheaths. We also present an analysis of the 3 November 2011 CME observed in longitudinal conjunction between MESSENGER, Venus Express, and STEREO-B focusing on the expansion of the CME and its correlation with the exponential fall-off of the maximum magnetic field strength in the ejecta.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا