Do you want to publish a course? Click here

Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections

66   0   0.0 ( 0 )
 Added by Nada Al-Haddad
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earths magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine the important geometrical and physical CME properties. In many instances, there is disagreement between such different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. Here, we compare three methods based on different assumptions for measurements of thirteen CMEs by the Wind spacecraft from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php due to their simplicity in terms of 1) small expansion speed throughout the CME and 2) little asymmetry in the magnetic field profile. This makes these thirteen events ideal candidates to compare codes that do not include expansion nor distortion. We find that, for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six out of the 13 events. Using the Grad-Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular-cylindrical non-force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a pre-condition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts at reconciling in situ and remote-sensing views of CMEs must take in consideration the compatibility of the different models with specific CME structures to better reproduce flux ropes.



rate research

Read More

219 - N. Lugaz 2013
We report on a numerical investigation of two coronal mass ejections (CMEs) which interact as they propagate in the inner heliosphere. We focus on the effect of the orientation of the CMEs relative to each other by performing four different simulations with the axis of the second CME rotated by 90 degrees from one simulation to the next. Each magneto-hydrodynamic (MHD) simulation is performed in three dimensions (3-D) with the Space Weather Modeling Framework (SWMF) in an idealized setting reminiscent of solar minimum conditions. We extract synthetic satellite measurements during and after the interaction and compare the different cases. We also analyze the kinematics of the two CMEs, including the evolution of their widths and aspect ratios. We find that the first CME contracts radially as a result of the interaction in all cases, but the amount of subsequent radial expansion depends on the relative orientation of the two CMEs. Reconnection between the two ejecta and between the ejecta and the interplanetary magnetic field (IMF) determines the type of structure resulting from the interaction. When a CME with a high inclination with respect to the ecliptic overtakes one with a low inclination, it is possible to create a compound event with a smooth rotation in the magnetic field vector over more than 180 degrees. Due to reconnection, the second CME only appears as an extended tail, and the event may be mistaken for a glancing encounter with an isolated CME. This configuration differs significantly from the one usually studied of a multiple-magnetic cloud event, which we found to be associated with the interaction of two CMEs with the same orientation.
Coronal Mass Ejections (CMEs) are major drivers of extreme space weather conditions, this being a matter of serious concern for our modern technologically-dependent society. Development of numerical approaches that would simulate CME generation and propagation through the interplanetary space is an important step towards our capability to predict CME arrival times at Earth and their geo-effectiveness. In this paper, we utilize a data-constrained Gibson--Low (GL) flux rope model to generate CMEs. We derive the geometry of the initial GL flux rope using the Graduated Cylindrical Shell (GCS) method. This method uses multiple viewpoints from STEREO A & B Cor1/Cor2, and SOHO/LASCO C2/C3 coronagraphs to determine the size and orientation of a CME flux rope as it starts to erupt from the Sun. A flux rope generated in this way is inserted into a quasi-steady global magnetohydrodynamics (MHD) background solar wind flow driven by SDO/HMI line-of-sight magnetogram data, and erupts immediately. Numerical results obtained with the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) code are compared with STEREO and SOHO/LASCO coronagraph observations in particular in terms of the CME speed, acceleration, and magnetic field structure.
We study interplanetary coronal mass ejections (ICMEs) measured by probes at different heliocentric distances (0.3-1AU) to investigate the propagation of ICMEs in the inner heliosphere and determine how the generic features of ICMEs change with heliospheric distance. Using data from the MESSENGER, Venus Express and ACE spacecraft, we analyze with the superposed epoch technique the profiles of ICME substructures, namely the sheath and the magnetic ejecta. We determine that the median magnetic field magnitude in the sheath correlates well with ICME speeds at 1 AU and we use this proxy to order the ICMEs at all spacecraft. We then investigate the typical ICME profiles for three categories equivalent to slow, intermediate and fast ICMEs. Contrary to fast ICMEs, slow ICMEs have a weaker solar wind field at the front and a more symmetric magnetic field profile. We find the asymmetry to be less pronounced at Earth than at Mercury, indicating a relaxation taking place as ICMEs propagate. We also find that the magnetic field intensities in the wake region of the ICMEs do not go back to the pre-ICME solar wind intensities, suggesting that the effects of ICMEs on the ambient solar wind last longer than the duration of the transient event. Such results provide an indication of physical processes that need to be reproduced by numerical simulations of ICME propagation. The samples studied here will be greatly improved by future missions dedicated to the exploration of the inner heliosphere, such as Parker Solar Probe and Solar Orbiter.
We examine 188 coronal mass ejections (CMEs) measured by the twin STEREO spacecraft during 2007-2016 to investigate the generic features of the CME sheath and the magnetic ejecta (ME) and dependencies of average physical parameters of the sheath on the ME. We classify the MEs into three categories, focusing on whether a ME drives both a shock and sheath, or only a sheath, or neither, near 1 AU. We also reevaluate our initial classification through an automated algorithm and visual inspection. We observe that even for leading edge speeds greater than 500 km/s, 1 out of 4 MEs do not drive shocks near 1 AU. MEs driving both shocks and sheaths are the fastest and propagate in high magnetosonic solar wind, whereas MEs driving only sheaths are the slowest and propagate in low magnetosonic solar wind. Our statistical and superposed epoch analyses indicate that all physical parameters are more enhanced in the sheath regions following shocks than in sheaths without shocks. However, differences within sheaths become statistically less significant for similar driving MEs. We also find that the radial thickness of ME-driven sheaths apparently has no clear linear correlation with the speed profile and associated Mach numbers of the driver.
Our knowledge of the properties of Coronal Mass Ejections (CMEs) in the inner heliosphere is constrained by the relative lack of plasma observations between Sun and 1 AU. In this work, we present a comprehensive catalog of 47 CMEs measured in situ measurements by two or more radially aligned spacecraft (MESSENGER, Venus Express, STEREO or Wind/ACE). We estimate the CME impact speeds at Mercury and Venus using a drag-based model and present an average propagation profile of CMEs (speed and deceleration/acceleration) in the inner heliosphere. We find that CME deceleration continues past Mercurys orbit but most of the deceleration occurs between the Sun and Mercury. We examine the exponential decrease of the maximum magnetic field strength in the CME with heliocentric distance using two approaches: a modified statistical method and analysis from individual conjunction events. Findings from both the approaches are on average consistent with previous studies but show significant event-to-event variability. We also find the expansion of the CME sheath to be well fit by a linear function. However, we observe the average sheath duration and its increase to be fairly independent of the initial CME speed, contradicting commonly held knowledge that slower CMEs drive larger sheaths. We also present an analysis of the 3 November 2011 CME observed in longitudinal conjunction between MESSENGER, Venus Express, and STEREO-B focusing on the expansion of the CME and its correlation with the exponential fall-off of the maximum magnetic field strength in the ejecta.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا