Do you want to publish a course? Click here

FingerVision Tactile Sensor Design and Slip Detection Using Convolutional LSTM Network

82   0   0.0 ( 0 )
 Added by Yazhan Zhang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Tactile sensing is essential to the human perception system, so as to robot. In this paper, we develop a novel optical-based tactile sensor FingerVision with effective signal processing algorithms. This sensor is composed of soft skin with embedded marker array bonded to rigid frame, and a web camera with a fisheye lens. While being excited with contact force, the camera tracks the movements of markers and deformation field is obtained. Compared to existing tactile sensors, our sensor features compact footprint, high resolution, and ease of fabrication. Besides, utilizing the deformation field estimation, we propose a slip classification framework based on convolution Long Short Term Memory (convolutional LSTM) networks. The data collection process takes advantage of the human sense of slip, during which human hand holds 12 daily objects, interacts with sensor skin and labels data with a slip or non-slip identity based on human feeling of slip. Our slip classification framework performs high accuracy of 97.62% on the test dataset. It is expected to be capable of enhancing the stability of robot grasping significantly, leading to better contact force control, finer object interaction and more active sensing manipulation.



rate research

Read More

A GelSight sensor uses an elastomeric slab covered with a reflective membrane to measure tactile signals. It measures the 3D geometry and contact force information with high spacial resolution, and successfully helped many challenging robot tasks. A previous sensor, based on a semi-specular membrane, produces high resolution but with limited geometry accuracy. In this paper, we describe a new design of GelSight for robot gripper, using a Lambertian membrane and new illumination system, which gives greatly improved geometric accuracy while retaining the compact size. We demonstrate its use in measuring surface normals and reconstructing height maps using photometric stereo. We also use it for the task of slip detection, using a combination of information about relative motions on the membrane surface and the shear distortions. Using a robotic arm and a set of 37 everyday objects with varied properties, we find that the sensor can detect translational and rotational slip in general cases, and can be used to improve the stability of the grasp.
Slip detection plays a vital role in robotic manipulation and it has long been a challenging problem in the robotic community. In this paper, we propose a new method based on deep neural network (DNN) to detect slip. The training data is acquired by a GelSight tactile sensor and a camera mounted on a gripper when we use a robot arm to grasp and lift 94 daily objects with different grasping forces and grasping positions. The DNN is trained to classify whether a slip occurred or not. To evaluate the performance of the DNN, we test 10 unseen objects in 152 grasps. A detection accuracy as high as 88.03% is achieved. It is anticipated that the accuracy can be further improved with a larger dataset. This method is beneficial for robots to make stable grasps, which can be widely applied to automatic force control, grasping strategy selection and fine manipulation.
As more robots are implemented for contact-rich tasks, tactile sensors are in increasing demand. For many circumstances, the contact is required to be compliant, and soft sensors are in need. This paper introduces a novelly designed soft sensor that can simultaneously estimate the contact force and contact location. Inspired by humans skin, which contains multi-layers of receptors, the designed tactile sensor has a dual-layer structure. The first layer is made of a conductive fabric that is responsible for sensing the contact force. The second layer is composed of four small conductive rubbers that can detect the contact location. Signals from the two layers are firstly processed by Wheatstone bridges and amplifier circuits so that the measurement noises are eliminated, and the sensitivity is improved. An Arduino chip is used for processing the signal and analyzing the data. The contact force can be obtained by a pre-trained model that maps from the voltage to force, and the contact location is estimated by the voltage signal from the conductive rubbers in the second layer. In addition, filtering methods are applied to eliminate the estimation noise. Finally, experiments are provided to show the accuracy and robustness of the sensor.
Tactile sensing is used by humans when grasping to prevent us dropping objects. One key facet of tactile sensing is slip detection, which allows a gripper to know when a grasp is failing and take action to prevent an object being dropped. This study demonstrates the slip detection capabilities of the recently developed Tactile Model O (T-MO) by using support vector machines to detect slip and test multiple slip scenarios including responding to the onset of slip in real time with eleven different objects in various grasps. We demonstrate the benefits of slip detection in grasping by testing two real-world scenarios: adding weight to destabilise a grasp and using slip detection to lift up objects at the first attempt. The T-MO is able to detect when an object is slipping, react to stabilise the grasp and be deployed in real-world scenarios. This shows the T-MO is a suitable platform for autonomous grasping by using reliable slip detection to ensure a stable grasp in unstructured environments. Supplementary video: https://youtu.be/wOwFHaiHuKY
We present a modified TacTip biomimetic optical tactile sensor design which demonstrates the ability to induce and detect incipient slip, as confirmed by recording the movement of markers on the sensors external surface. Incipient slip is defined as slippage of part, but not all, of the contact surface between the sensor and object. The addition of ridges - which mimic the friction ridges in the human fingertip - in a concentric ring pattern allowed for localised shear deformation to occur on the sensor surface for a significant duration prior to the onset of gross slip. By detecting incipient slip we were able to predict when several differently shaped objects were at risk of falling and prevent them from doing so. Detecting incipient slip is useful because a corrective action can be taken before slippage occurs across the entire contact area thus minimising the risk of objects been dropped.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا