Do you want to publish a course? Click here

Development of Soft Tactile Sensor for Force Measurement and Position Detection

105   0   0.0 ( 0 )
 Added by Wu-Te Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

As more robots are implemented for contact-rich tasks, tactile sensors are in increasing demand. For many circumstances, the contact is required to be compliant, and soft sensors are in need. This paper introduces a novelly designed soft sensor that can simultaneously estimate the contact force and contact location. Inspired by humans skin, which contains multi-layers of receptors, the designed tactile sensor has a dual-layer structure. The first layer is made of a conductive fabric that is responsible for sensing the contact force. The second layer is composed of four small conductive rubbers that can detect the contact location. Signals from the two layers are firstly processed by Wheatstone bridges and amplifier circuits so that the measurement noises are eliminated, and the sensitivity is improved. An Arduino chip is used for processing the signal and analyzing the data. The contact force can be obtained by a pre-trained model that maps from the voltage to force, and the contact location is estimated by the voltage signal from the conductive rubbers in the second layer. In addition, filtering methods are applied to eliminate the estimation noise. Finally, experiments are provided to show the accuracy and robustness of the sensor.



rate research

Read More

Retrieving rich contact information from robotic tactile sensing has been a challenging, yet significant task for the effective perception of object properties that the robot interacts with. This work is dedicated to developing an algorithm to estimate contact force and torque for vision-based tactile sensors. We first introduce the observation of the contact deformation patterns of hyperelastic materials under ideal single-axial loads in simulation. Then based on the observation, we propose a method of estimating surface forces and torque from the contact deformation vector field with the Helmholtz-Hodge Decomposition (HHD) algorithm. Extensive experiments of calibration and baseline comparison are followed to verify the effectiveness of the proposed method in terms of prediction error and variance. The proposed algorithm is further integrated into a contact force visualization module as well as a closed-loop adaptive grasp force control framework and is shown to be useful in both visualization of contact stability and minimum force grasping task.
Tactile sensing is essential to the human perception system, so as to robot. In this paper, we develop a novel optical-based tactile sensor FingerVision with effective signal processing algorithms. This sensor is composed of soft skin with embedded marker array bonded to rigid frame, and a web camera with a fisheye lens. While being excited with contact force, the camera tracks the movements of markers and deformation field is obtained. Compared to existing tactile sensors, our sensor features compact footprint, high resolution, and ease of fabrication. Besides, utilizing the deformation field estimation, we propose a slip classification framework based on convolution Long Short Term Memory (convolutional LSTM) networks. The data collection process takes advantage of the human sense of slip, during which human hand holds 12 daily objects, interacts with sensor skin and labels data with a slip or non-slip identity based on human feeling of slip. Our slip classification framework performs high accuracy of 97.62% on the test dataset. It is expected to be capable of enhancing the stability of robot grasping significantly, leading to better contact force control, finer object interaction and more active sensing manipulation.
A GelSight sensor uses an elastomeric slab covered with a reflective membrane to measure tactile signals. It measures the 3D geometry and contact force information with high spacial resolution, and successfully helped many challenging robot tasks. A previous sensor, based on a semi-specular membrane, produces high resolution but with limited geometry accuracy. In this paper, we describe a new design of GelSight for robot gripper, using a Lambertian membrane and new illumination system, which gives greatly improved geometric accuracy while retaining the compact size. We demonstrate its use in measuring surface normals and reconstructing height maps using photometric stereo. We also use it for the task of slip detection, using a combination of information about relative motions on the membrane surface and the shear distortions. Using a robotic arm and a set of 37 everyday objects with varied properties, we find that the sensor can detect translational and rotational slip in general cases, and can be used to improve the stability of the grasp.
This work presents a new version of the tactile-sensing finger GelSlim 3.0, which integrates the ability to sense high-resolution shape, force, and slip in a compact form factor for use with small parallel jaw grippers in cluttered bin-picking scenarios. The novel design incorporates the capability to use real-time analytic methods to measure shape, estimate the contact 3D force distribution, and detect incipient slip. To achieve a compact integration, we optimize the optical path from illumination source to camera and other geometric variables in a optical simulation environment. In particular, we optimize the illumination sources and a light shaping lens around the constraints imposed by the photometric stereo algorithm used for depth reconstruction. The optimized optical configuration is integrated into a finger design composed of robust and easily replaceable snap-to-fit fingetip module that allow for ease of manufacture, assembly, use, and repair. To stimulate future research in tactile-sensing and provide the robotics community access to reliable and easily-reproducible tactile finger with a diversity of sensing modalities, we open-source the design and software at https://github.com/mcubelab/gelslim.
Tactile sensing is important for robots to perceive the world as it captures the texture and hardness of the object in contact and is robust to illumination and colour variances. However, due to the limited sensing area and the resistance of the fixed surface, current tactile sensors have to tap the tactile sensor on target object many times when assessing a large surface, i.e., pressing, lifting up and shifting to another region. This process is ineffective and time consuming. It is also undesirable to drag such sensors as this often damages the sensitive membrane of the sensor or the object. To address these problems, we propose a cylindrical optical tactile sensor named TouchRoller that can roll around its center axis. It maintains being in contact with the assessed surface throughout the entire motion, which allows for measuring the object continuously and effectively. Extensive experiments show that the TouchRoller sensor can cover a textured surface of 8cm*11cm in a short time of 10s, much more effectively than a flat optical tactile sensor (in 196s). The reconstructed map of the texture from the collected tactile images has a high Structural Similarity Index (SSIM) of 0.31 on average, when compared with the visual texture. In addition, the contacts on the sensor can be localised with a low localisation error, 2.63mm in the center regions and 7.66mm on average. The proposed sensor will enable the fast assessment of large surfaces with high-resolution tactile sensing, and also the effective collection of tactile images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا