No Arabic abstract
Multicomponent alloying has displayed extraordinary potential for producing exceptional structural and functional materials. However, the synthesis of single-phase, multi-principal covalent compounds remains a challenge. Here we present a diffusion-controlled alloying strategy for the successful realization of covalent multi-principal transition metal carbides (MPTMCs) with a single face-centered cubic (FCC) phase. The increased interfacial diffusion promoted by the addition of a nonstoichiometric compound leads to rapid formation of the new single phase at much lower sintering temperature. Direct atomic-level observations via scanning transmission electron microscopy demonstrate that MPTMCs are composed of a single phase with a random distribution of all cations, which holds the key to the unique combinations of improved fracture toughness, superior Vickers hardness, and extremely lower thermal diffusivity achieved in MPTMCs. The present discovery provides a promising approach toward the design and synthesis of next-generation high-performance materials.
By means of theoretical modeling and experimental synthesis and characterization, we investigate the structural properties of amorphous Zr-Si-C. Two chemical compositions are selected, Zr0.31Si0.29C0.40 and Zr0.60Si0.33C0.07. The amorphous structures are generated in the theoretical part of our work, by the stochastic quenching (SQ) method, and detailed comparison is made as regards structure and density of the experimentally synthesized films. These films are analyzed experimentally using X-ray absorption spectroscopy, transmission electron microscopy and X-ray diffraction. Our results demonstrate for the first time a remarkable agreement between theory and experiment concerning bond distances and atomic coordination of this complex amorphous metal carbide. The demonstrated power of the SQ method opens up avenues for theoretical predictions of amorphous materials in general.
The DFT-1/2 method in density functional theory [L. G. Ferreira et al., Phys. Rev. B 78, 125116 (2008)] aims to provide accurate band gaps at the computational cost of semilocal calculations. The method has shown promise in a large number of cases, however some of its limitations or ambiguities on how to apply it to covalent semiconductors have been pointed out recently [K.-H. Xue et al., Comput. Mater. Science 153, 493 (2018)]. In this work, we investigate in detail some of the problems of the DFT-1/2 method with a focus on two classes of materials: covalently bonded semiconductors and transition-metal oxides. We argue for caution in the application of DFT-1/2 to these materials, and the condition to get an improved band gap is a spatial separation of the orbitals at the valence band maximum and conduction band minimum.
Temperature dependent electrical resistivity, crystal structure and heat capacity measurements reveal a resistivity drop and metal to semiconductor transition corresponding to first order structural phase transition near 400 K in Ca3Co4O9. The lattice parameter c varies smoothly with increasing temperature, while anomalies in the a, b1 and b2 lattice parameters occur at ~ 400 K. Both Ca2CoO3 and CoO2 layers become distorted above ~ 400 K associated with the metal to semiconductor transport behavior change. Resistivity and heat capacity measurements as a function of temperature under magnetic field indicates low spin contribution to this transition. Reduced resistivity associated with this first order phase transition from metallic to semiconducting behavior enhances the thermoelectric properties at high temperatures and points to the metal to semiconductor transition as a mechanism for improved ZT in high temperature thermoelectric oxides.
Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. Herein, we report density functional theory calculations of structure and properties of the Cr-AlN system for Cr concentrations ranging past the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Cr$_x$Al$_{1-x}$N alloys is the increase of the internal parameter $u$ of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we have found that Cr-AlN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Cr-AlN is a viable piezoelectric material whose properties can be tuned via Cr composition; we support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus $d_{33}$ is approximately four times larger than that of pure AlN. This finding, combined with the relative ease of synthesis, may propel Cr-AlN as the prime piezoelectric material for applications such as resonators and acoustic wave generators.
MXenes are a set of two-dimensional transition metal carbides and nitrides that offer many potential applications in energy storage and electronic devices. As an important parameter to design new electronic devices, we investigate the work functions of bare MXenes and their functionalized ones with F, OH, and O chemical groups using first-principles calculations. From our calculations, it turns out that the OH terminated MXenes attain ultralow work functions between 1.6 and 2.8 eV. Moreover, depending on the type of the transition metal, the F or O functionalization affects increasing or decreasing the work functions. We show that the changes in the work functions upon functionalizations are linearly correlated with the changes in the surface dipole moments. It is shown that the work functions of the F or O terminated MXenes are controlled by two factors: the induced dipole moments by the charge transfers between F/O and the substrate, and the changes in the total surface dipole moments caused by surface relaxation upon the functionalization. However, in the cases of the OH terminated MXenes, in addition to these two factors, the intrinsic dipole moments of the OH groups play an important role in determining the total dipole moments and consequently justify their ultralow work functions.