No Arabic abstract
Abridged: Getting a better understanding of the evolution and nucleosynthetic yields of the most metal-poor stars (appr. Z<=10^-5) is critical because they are part of the big picture of the history of the primitive Universe. Yet many of the remaining unknowns of stellar evolution lie in the birth, life, and death of these objects. We review stellar evolution of intermediate-mass (IMS) Z<=10-5 models existing in the literature, with a focus on the problem of their final fates. The depth and efficiency of mixing episodes are critical to determine the mass limits for the formation of electron-capture supernovae, but our knowledge of these phenomena is not complete because they are strongly affected by the choice of input physics. We also consider the alternative SNI1/2 channel to form SNe out of the most metal-poor IMS. In this case, it is critical to understand the thermally-pulsing AGB evolution until the late stages. Efficient second dredge-up and, later, third dredge-up episodes could be able to pollute stellar envelopes enough for the stars to undergo thermal pulses in a way very similar to that of higher initial Z objects. Inefficient 2nd and/or 3rd dredge-up may leave an almost pristine envelope, unable to sustain strong stellar winds. This may allow the H-exhausted core to grow to M_Ch before the envelope is lost, and thus let the star explode as a SNI1/2. After reviewing the information available on these two possible channels for the formation of SNe, we discuss existing nucleosynthetic yields of stars of metallicity Z<=10^-5, and present an example of nucleosynthetic calculations for a thermally-pulsing Super-AGB star of Z=10^-5. We compare theoretical predictions with observations of the lowest [Fe/H] objects detected. The review closes by discussing current open questions as well as possible fruitful avenues for future research.
We study the evolution of extremely metal-poor AGB stars, with metallicities down to [Fe/H]=-5, to understand the main evolutionary properties, the efficiency of the processes able to alter their surface chemical composition and to determine the gas and dust yields. We calculate two sets of evolutionary sequences of stars in the 1-7.5Msun mass range, evolved from the pre-main sequence to the end of the AGB phase. To explore the extremely metal-poor chemistries we adopted the metallicities Z=3x10^{-5} and Z=3x10^{-7} which correspond, respectively to [Fe/H]=-3 and [Fe/H]=-5. The results from stellar evolution modelling are used to calculate the yields of the individual chemical species. We also modelled dust formation in the wind, to determine the dust produced by these objects. The evolution of AGB stars in the extremely metal-poor domain explored here proves tremendously sensitive to the initial mass of the star. M<2Msun stars experience several third dredge-up events, which favour the gradual surface enrichment of C12 and the formation of significant quantities of carbonaceous dust, of the order of 0.01Msun. The C13 and nitrogen yiel are found to be significantly smaller than in previous explorations of low-mass, metal-poor AGB stars, owing to the weaker proton ingestion episodes experienced during the initial AGB phases. M>5Msun stars experience hot bottom burning and their surface chemistry reflects the equilibria of a very advanced proton-capture nucleosynthesis; little dust production takes place in their wind. Intermediate mass stars experience both third dredge-up and hot bottom burning: they prove efficient producers of nitrogen, which is formed by proton captures on C12 nuclei of primary origin dredged-up from the internal regions.
We present asymptotic giant branch (AGB) models of metallicity $Z=10^{-4}$ and $Z=3times 10^{-4}$, with the aim of understanding how the gas enrichment and the dust production change in very metal-poor environments and to assess the general contribution of AGB stars to the cosmic dust yield. The stellar yields and the dust produced are determined by the change in the surface chemical composition, with a transition occurring at $sim 2.5~M_{odot}$. Stars of mass $M < 2.5~M_{odot}$ reach the carbon stage and produce carbon dust, whereas their higher mass counterparts produce mainly silicates and alumina dust; in both cases the amount of dust manufactured decreases towards lower metallicities. The $Z=10^{-4}$ models show a complex and interesting behaviour on this side, because the efficient destruction of the surface oxygen favours the achievement of the C-star stage, independently of the initial mass. The present results might indicate that the contribution from this class of stars to the overall dust enrichment in metal-poor environments is negligible at redshifts $z>5$.
We investigate hydrodynamical and nucleosynthetic properties of the jet-induced explosion of a population III $40M_odot$ star and compare the abundance patterns of the yields with those of the metal-poor stars. We conclude that (1) the ejection of Fe-peak products and the fallback of unprocessed materials can account for the abundance patterns of the extremely metal-poor (EMP) stars and that (2) the jet-induced explosion with different energy deposition rates can explain the diversity of the abundance patterns of the metal-poor stars. Furthermore, the abundance distribution after the explosion and the angular dependence of the yield are shown for the models with high and low energy deposition rates $dot{E}_{rm dep}=120times10^{51} {rm ergs s^{-1}}$ and $1.5times10^{51} {rm ergs s^{-1}}$. We also find that the peculiar abundance pattern of a Si-deficient metal-poor star HE 1424--0241 can be reproduced by the angle-delimited yield for $theta=30^circ-35^circ$ of the model with $dot{E}_{rm dep}=120times10^{51} {rm ergs s^{-1}}$.
We present deep Hubble Space Telescope single-star photometry of Leo A in B, V, and I. Our new field of view is offset from the centrally located field observed by Tolstoy et al. (1998) in order to expose the halo population of this galaxy. We report the detection of metal-poor red horizontal branch stars, which demonstrate that Leo A is not a young galaxy. In fact, Leo A is as least as old as metal-poor Galactic Globular Clusters which exhibit red horizontal branches, and are considered to have a minimum age of about 9 Gyr. We discuss the distance to Leo A, and perform an extensive comparison of the data with stellar isochrones. For a distance modulus of 24.5, the data are better than 50% complete down to absolute magnitudes of 2 or more. We can easily identify stars with metallicities between 0.0001 and 0.0004, and ages between about 5 and 10 Gyr, in their post-main-sequence phases, but lack the detection of main-sequence turnoffs which would provide unambiguous proof of ancient (>10 Gyr) stellar generations. Blue horizontal branch stars are above the detection limits, but difficult to distinguish from young stars with similar colors and magnitudes. Synthetic color-magnitude diagrams show it is possible to populate the blue horizontal branch in the halo of Leo A. The models also suggest ~50% of the total astrated mass in our pointing to be attributed to an ancient (>10 Gyr) stellar population. We conclude that Leo A started to form stars at least about 9 Gyr ago. Leo A exhibits an extremely low oxygen abundance, of only 3% of Solar, in its ionized interstellar medium. The existence of old stars in this very oxygen-deficient galaxy illustrates that a low oxygen abundance does not preclude a history of early star formation.
We describe our first attempt at modelling nucleosynthesis in massive AGB stars which have undergone core carbon burning, the super-AGB stars. We fit a synthetic model to detailed stellar evolution models in the mass range 9<=M/Msun<=11.5 (Z=0.02), and extrapolate these fits to the end of the AGB. We determine the number of thermal pulses and AGB lifetime as a function of mass and mass-loss prescription. Our preliminary nucleosynthesis calculations show that, for a reasonable mass-loss rate, the effect of hot-bottom burning in super-AGB stars on the integrated yield of a stellar population is not large. There are many uncertainties, such as mass-loss and convective overshooting, which prevent accurate yield calculations. However, as potential progenitors of electron-capture supernovae, these stars may contribute 7% of non-type-Ia supernovae.