No Arabic abstract
We discuss an innovative method for the description of inhomogeneous phases designed to improve the standard Ginzburg-Landau expansion. The method is characterized by two key ingredients. The first one is a moving average of the order parameter designed to account for the long-wavelength modulations of the condensate. The second one is a sum of the high frequency modes, to improve the description of the phase transition to the restored phase. The method is applied to compare the free energies of 1D and 2D inhomogeneous structures arising in the chirally symmetric broken phase.
In this paper we study the low energy physics of Landau-Ginzburg models with N=(0,2) supersymmetry. We exhibit a number of classes of relatively simple LG models where the conformal field theory at the low energy fixed point can be explicitly identified. One interesting class of fixed points can be thought of as heterotic minimal models. Other examples include N=(0,2) renormalization group flows that end up at N=(2,2) minimal models and models with non-abelian symmetry.
We apply Ginzburg-Landau theory to determine BCS pairing in a strongly-coupled uniform superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the critical temperature in the space of the parameters characterizing the thermodynamic potential terms of fourth order in the pairing gap. Within the color and flavor antisymmetric channel with zero total angular momentum, the phase diagram contains an isoscalar (IS) color-antitriplet phase and a color-flavor-locked (CFL) phase, reached by a second order transition from the normal state, as well as states reached by a first order transition. We complement the general Ginzburg-Landau approach by deriving the high-density asymptotic form of the Ginzburg-Landau free energy from the weak-coupling gap equation. The dynamically-screened, long-range color magnetic interactions are taken into account in solving the gap equation. We find that in the limit of weak coupling, the IS phase is less favorable near the transition temperature than the CFL phase. In view of the fact that deconfined quark matter must be color charge neutral, we incorporate the constraint of overall color neutrality into the Ginzburg-Landau theory and the gap equation. This constraint yields a disparity in the chemical potential between colors and reduces the size of the gap, in the presence of the anisotropy of the order parameters in color space. In comparison with the case in which there are no chemical potential differences between colors and hence the superfluid generally has nonzero net color charge, we find that while the constraint of color neutrality has only negligible effects on the gap in the weak coupling regime, it appreciably destabilizes the IS phase in the strong coupling regime without affecting the CFL phase.
We present numerical studies of the dynamics of vortices in the Ginzburg Landau model using equations derived from the gradient flow of the free energy. These equations have previously been proposed to describe the dynamics of n-vortices away from equilibrium. We are able to model the dynamics of multiple n-vortex configurations starting far from equilibrium. We find generically that there are two time scales for equilibration: a short time scale related to the formation time for a single n-vortex, and a longer time scale that characterizes vortex-vortex interactions.
It is believed that the two-dimensional massless $mathcal{N}=2$ Wess--Zumino model becomes the $mathcal{N}=2$ superconformal field theory (SCFT) in the infrared (IR) limit. We examine this theoretical conjecture of the Landau--Ginzburg (LG) description of the $mathcal{N}=2$ SCFT by numerical simulations on the basis of a supersymmetric-invariant momentum-cutoff regularization. We study a single supermultiplet with cubic and quartic superpotentials. From two-point correlation functions in the IR region, we measure the scaling dimension and the central charge, which are consistent with the conjectured LG description of the $A_2$ and $A_3$ minimal models, respectively. Our result supports the theoretical conjecture and, at the same time, indicates a possible computational method of correlation functions in the $mathcal{N}=2$ SCFT from the LG description.
In a simulation of SU(2) gauge theory we investigate, after maximal Abelian projection, the dual Maxwell equations for colour field and monopole current distributions around a static quark-antiquark pair Q_ Q in vacuo. Within the dual superconductor picture we carry out a Ginzburg-Landau type analysis of the flux tube profile. As a result we can determine the coherence length of the GL wave function related to the monopole condensate, xi = .25(3) fm, to be compared to the penetration length, lambda = >.15(2) fm (scaled with the string tension).