Do you want to publish a course? Click here

On the genus of a quotient of a numerical semigroup

164   0   0.0 ( 0 )
 Added by Hayan Nam
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We find a relation between the genus of a quotient of a numerical semigroup $S$ and the genus of $S$ itself. We use this identity to compute the genus of a quotient of $S$ when $S$ has embedding dimension $2$. We also exhibit identities relating the Frobenius numbers and the genus of quotients of numerical semigroups that are generated by certain types of arithmetic progressions.



rate research

Read More

For a knot diagram we introduce an operation which does not increase the genus of the diagram and does not change its representing knot type. We also describe a condition for this operation to certainly decrease the genus. The proof involves the study of a relation between the genus of a virtual knot diagram and the genus of a knotoid diagram, the former of which has been introduced by Stoimenow, Tchernov and Vdovina, and the latter by Turaev recently. Our operation has a simple interpretation in terms of Gauss codes and hence can easily be computer-implemented.
We give bounds on the primes of geometric bad reduction for curves of genus three of primitive CM type in terms of the CM orders. In the case of genus one, there are no primes of geometric bad reduction because CM elliptic curves are CM abelian varieties, which have potential good reduction everywhere. However, for genus at least two, the curve can have bad reduction at a prime although the Jacobian has good reduction. Goren and Lauter gave the first bound in the case of genus two. In the cases of hyperelliptic and Picard curves, our results imply bounds on primes appearing in the denominators of invariants and class polynomials, which are important for algorithmic construction of curves with given characteristic polynomials over finite fields.
181 - Serin Hong 2019
We completely classify all quotient bundles of a given vector bundle on the Fargues-Fontaine curve. As consequences, we have two additional classification results: a complete classification of all vector bundles that are generated by a fixed number of global sections and a nearly complete classification of subbundles of a given vector bundle. For the proof, we combine the dimension counting argument for moduli of bundle maps developed in [BFH+17] with a series of reduction arguments based on some reinterpretation of the classifying conditions.
A numerical semigroup $S$ is a cofinite, additively-closed subset of the nonnegative integers that contains $0$. In this paper, we initiate the study of atomic density, an asymptotic measure of the proportion of irreducible elements in a given ring or semigroup, for semigroup algebras. It is known that the atomic density of the polynomial ring $mathbb{F}_q[x]$ is zero for any finite field $mathbb{F}_q$; we prove that the numerical semigroup algebra $mathbb{F}_q[S]$ also has atomic density zero for any numerical semigroup~$S$. We also examine the particular algebra $mathbb{F}_2[x^2,x^3]$ in more detail, providing a bound on the rate of convergence of the atomic density as well as a counting formula for irreducible polynomials using M{o}bius inversion, comparable to the formula for irreducible polynomials over a finite field $mathbb{F}_q$.
We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},..., a_{d-s} are fixed. Our estimate holds without restrictions on the characteristic of Fq and asserts that V(d,s,bfs{a})=mu_d.q+mathcal{O}(1), where V(d,s,bfs{a}) is such an average cardinality, mu_d:=sum_{r=1}^d{(-1)^{r-1}}/{r!} and bfs{a}:=(a_{d-1},.., d_{d-s}). We provide an explicit upper bound for the constant underlying the mathcal{O}--notation in terms of d and s with good behavior. Our approach reduces the question to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. We show that the polynomials defining such complete intersections are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning the singular locus of the varieties under consideration, from which a suitable estimate on the number of Fq--rational points is established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا