No Arabic abstract
This paper demonstrates the advantages of sharing information about unknown features of covariates across multiple model components in various nonparametric regression problems including multivariate, heteroscedastic, and semi-continuous responses. In this paper, we present methodology which allows for information to be shared nonparametrically across various model components using Bayesian sum-of-tree models. Our simulation results demonstrate that sharing of information across related model components is often very beneficial, particularly in sparse high-dimensional problems in which variable selection must be conducted. We illustrate our methodology by analyzing medical expenditure data from the Medical Expenditure Panel Survey (MEPS). To facilitate the Bayesian nonparametric regression analysis, we develop two novel models for analyzing the MEPS data using Bayesian additive regression trees - a heteroskedastic log-normal hurdle model with a shrink-towards-homoskedasticity prior, and a gamma hurdle model.
Studying the neurological, genetic and evolutionary basis of human vocal communication mechanisms using animal vocalization models is an important field of neuroscience. The data sets typically comprise structured sequences of syllables or `songs produced by animals from different genotypes under different social contexts. We develop a novel Bayesian semiparametric framework for inference in such data sets. Our approach is built on a novel class of mixed effects Markov transition models for the songs that accommodates exogenous influences of genotype and context as well as animal-specific heterogeneity. We design efficient Markov chain Monte Carlo algorithms for posterior computation. Crucial advantages of the proposed approach include its ability to provide insights into key scientific queries related to global and local influences of the exogenous predictors on the transition dynamics via automated tests of hypotheses. The methodology is illustrated using simulation experiments and the aforementioned motivating application in neuroscience.
Understanding how adult humans learn non-native speech categories such as tone information has shed novel insights into the mechanisms underlying experience-dependent brain plasticity. Scientists have traditionally examined these questions using longitudinal learning experiments under a multi-category decision making paradigm. Drift-diffusion processes are popular in such contexts for their ability to mimic underlying neural mechanisms. Motivated by these problems, we develop a novel Bayesian semiparametric inverse Gaussian drift-diffusion mixed model for multi-alternative decision making in longitudinal settings. We design a Markov chain Monte Carlo algorithm for posterior computation. We evaluate the methods empirical performances through synthetic experiments. Applied to our motivating longitudinal tone learning study, the method provides novel insights into how the biologically interpretable model parameters evolve with learning, differ between input-response tone combinations, and differ between well and poorly performing adults.
We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence ruling out models based on Poisson processes. The proposed class of FRActional Probit (FRAP) models is based on thresholding of a latent process consisting of an additive expansion of a smooth Gaussian process with a fractional Brownian motion. We develop a Bayesian approach to inference using Markov chain Monte Carlo, and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data, in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in Supplementary Materials.
We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contaminated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls.
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference for models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated. We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of the relevant components of the summary statistics and bypassing the derivation of the associated tolerance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non parametric) regression setting. We advocate the derivation of a new random forest for each component of the parameter vector of interest. When compared with earlier ABC solutions, this method offers significant gains in terms of robustness to the choice of the summary statistics, does not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible interval estimations for a given computing time. We illustrate the performance of our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics example dealing with human population evolution. All methods designed here have been incorporated in the R package abcrf (version 1.7) available on CRAN.