No Arabic abstract
In this paper, we study the parameter synthesis problem for a class of parametric timed automata. The problem asks to construct the set of valuations of the parameters in the parametric timed automa- ton, referred to as the feasible region, under which the resulting timed automaton satisfies certain properties. We show that the parameter syn- thesis problem of parametric timed automata with only one parametric clock (unlimited concretely constrained clock) and arbitrarily many pa- rameters is solvable when all the expressions are linear expressions. And it is moreover the synthesis problem is solvable when the form of con- straints are parameter polynomial inequality not just simple constraint and parameter domain is nonnegative real number.
We consider the parameter synthesis problem of parametric timed automata (PTAs). The problem is, given a PTA and a property, to compute the set of valuations of the parameters under which the resulting timed automaton satisfies the property. Such a set of parameter valuations is called a feasible region for the PTA and the property. The problem is known undecidable in general. This paper, however, presents our study on some decidable sub-classes of PTAs and proposes efficient parameter synthesis algorithms for them.
We consider a notion of non-interference for timed automata (TAs) that allows to quantify the frequency of an attack; that is, we infer values of the minimal time between two consecutive actions of the attacker, so that (s)he disturbs the set of reachable locations. We also synthesize valuations for the timing constants of the TA (seen as parameters) guaranteeing non-interference. We show that this can reduce to reachability synthesis in parametric timed automata. We apply our method to a model of the Fischer mutual exclusion protocol and obtain preliminary results.
Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a timed automaton with a smaller number of clocks such that the timed language accepted by the original automaton is preserved is known to be undecidable. In this paper, we give a construction, which for any given timed automaton produces a timed bisimilar automaton with the least number of clocks. Further, we show that such an automaton with the minimum possible number of clocks can be constructed in time that is doubly exponential in the number of clocks of the original automaton.
We address the safety verification and synthesis problems for real-time systems. We introduce real-time programs that are made of instructions that can perform assignments to discrete and real-valued variables. They are general enough to capture interesting classes of timed systems such as timed automata, stopwatch automata, time(d) Petri nets and hybrid automata. We propose a semi-algorithm using refinement of trace abstractions to solve both the reachability verification problem and the parameter synthesis problem for real-time programs. All of the algorithms proposed have been implemented and we have conducted a series of experiments, comparing the performance of our new approach to state-of-the-art tools in classical reachability, robustness analysis and parameter synthesis for timed systems. We show that our new method provides solutions to problems which are unsolvable by the current state-of-the-art tools.
The paper presents a novel algorithm for computing best and worst case execution times (BCET/WCET) of timed automata models with cyclic behaviour. The algorithms can work on any arbitrary diagonal-free TA and can handle more cases than previously existing algorithms for BCET/WCET computations, as it can handle cycles in TA and decide whether they lead to an infinite WCET. We show soundness of the proposed algorithm and study its complexity. To our knowledge, this is the first model checking algorithm that addresses comprehensively the BCET/WCET problem of systems with cyclic behaviour. Behrmann et al. provide an algorithm for computing the minimum cost/time of reaching a goal state in priced timed automata (PTA). The algorithm has been implemented in the well-known model checking tool UPPAAL to compute the minimum time for termination of an automaton. However, we show that in certain circumstances, when infinite cycles exist, the algorithm implemented in UPPAAL may not terminate, and we provide examples which UPPAAL fails to verify.