Do you want to publish a course? Click here

The Best-or-Worst and the Postdoc problems with random number of candidates

100   0   0.0 ( 0 )
 Added by Jose Maria Grau
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we consider two variants of the Secretary problem: The Best-or-Worst and the Postdoc problems. We extend previous work by considering that the number of objects is not known and follows either a discrete Uniform distribution $mathcal{U}[1,n]$ or a Poisson distribution $mathcal{P}(lambda)$. We show that in any case the optimal strategy is a threshold strategy, we provide the optimal cutoff values and the asymptotic probabilities of success. We also put our results in relation with closely related work.



rate research

Read More

We consider two variants of the secretary problem, theemph{ Best-or-Worst} and the emph{Postdoc} problems, which are closely related. First, we prove that both variants, in their standard form with binary payoff 1 or 0, share the same optimal stopping rule. We also consider additional cost/perquisites depending on the number of interviewed candidates. In these situations the optimal strategies are very different. Finally, we also focus on the Best-or-Worst variant with different payments depending on whether the selected candidate is the best or the worst.
We compute the best constant in the Khintchine inequality under assumption that the sum of Rademacher random variables is zero.
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Kozma and Wormald, to have order $log^2 n$. We prove that starting from a uniform vertex (equivalently, from a fixed vertex conditioned to belong to the giant) both accelerates mixing to $O(log n)$ and concentrates it (the cutoff phenomenon occurs): the typical mixing is at $( u {bf d})^{-1}log n pm (log n)^{1/2+o(1)}$, where $ u$ and ${bf d}$ are the speed of random walk and dimension of harmonic measure on a ${rm Poisson}(lambda)$-Galton-Watson tree. Analogous results are given for graphs with prescribed degree sequences, where cutoff is shown both for the simple and for the non-backtracking random walk.
A t by n random matrix A is formed by sampling n independent random column vectors, each containing t components. The random Gram matrix of size n, G_n, contains the dot products between all pairs of column vectors in the randomly generated matrix A; that is, G_n = transpose(A) A. The matrix G_n has characteristic roots coinciding with the singular values of A. Furthermore, the sequences det(G_i) and per(G_i) (for i = 0, 1, ..., n) are factors that comprise the expected coefficients of the characteristic and permanental polynomials of G_n. We prove theorems that relate the generating functions and recursions for the traces of matrix powers, expected characteristic coefficients, expected determinants E(det(G_n)), and expected permanents E(per(G_n)) in terms of each other. Using the derived recursions, we exhibit the efficient computation of the expected determinant and expected permanent of a random Gram matrix G_n, formed according to any underlying distribution. These theoretical results may be used both to speed up numerical algorithms and to investigate the numerical properties of the expected characteristic and permanental coefficients of any matrix comprised of independently sampled columns.
153 - Hamed Amini , Marc Lelarge 2011
In this paper we study the impact of random exponential edge weights on the distances in a random graph and, in particular, on its diameter. Our main result consists of a precise asymptotic expression for the maximal weight of the shortest weight paths between all vertices (the weighted diameter) of sparse random graphs, when the edge weights are i.i.d. exponential random variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا