No Arabic abstract
We study the general formation problem for a group of mobile agents in a plane, in which the agents are required to maintain a distribution pattern, as well as to rotate around or remain static relative to a static/moving target. The prescribed distribution pattern is a class of general formations that the distances between neighboring agents or the distances from each agent to the target do not need to be equal. Each agent is modeled as a double integrator and can merely perceive the relative information of the target and its neighbors. A distributed control law is designed using the limit-cycle based idea to solve the problem. One merit of the controller is that it can be implemented by each agent in its Frenet-Serret frame so that only local information is utilized without knowing global information. Theoretical analysis is provided of the equilibrium of the N-agent system and of the convergence of its converging part. Numerical simulations are given to show the effectiveness and performance of the proposed controller.
We address the optimal dynamic formation problem in mobile leader-follower networks where an optimal formation is generated to maximize a given objective function while continuously preserving connectivity. We show that in a convex mission space, the connectivity constraints can be satisfied by any feasible solution to a mixed integer nonlinear optimization problem. When the optimal formation objective is to maximize coverage in a mission space cluttered with obstacles, we separate the process into intervals with no obstacles detected and intervals where one or more obstacles are detected. In the latter case, we propose a minimum-effort reconfiguration approach for the formation which still optimizes the objective function while avoiding the obstacles and ensuring connectivity. We include simulation results illustrating this dynamic formation process.
A multi-agent system designed to achieve distance-based shape control with flocking behavior can be seen as a mechanical system described by a Lagrangian function and subject to additional external forces. Forced variational integrators are given by the discretization of Lagrange-dAlembert principle for systems subject to external forces, and have proved useful for numerical simulation studies of complex dynamical systems. We derive forced variational integrators that can be employed in the context of control algorithms for distance-based shape with velocity consensus. In particular, we provide an accurate numerical integrator with a lower computational cost than traditional solutions, while preserving the configuration space and symmetries. We also provide an explicit expression for the integration scheme in the case of an arbitrary number of agents with double integrator dynamics. For a numerical comparison of the performances, we use a planar formation consisting of three autonomous agents.
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distributed optimization problem. To solve this problem, we first augment each agent with an optimal signal generator to reproduce the global optimal point of the given distributed optimization problem, and then complete the global optimal consensus design by developing some adaptive tracking controllers for these augmented agents. Moreover, we present an extension when only real-time gradients are available. The trajectories of all agents in both cases are shown to be well-defined and achieve the expected consensus on the optimal point. Two numerical examples are given to verify the efficacy of our algorithms.
In this paper, we extend the results from Jiao et al. (2019) on distributed linear quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic tracking control for leader-follower multi-agent systems. Given one autonomous leader and a number of homogeneous followers, we introduce an associated global quadratic cost functional. We assume that the leader shares its state information with at least one of the followers and the communication between the followers is represented by a connected simple undirected graph. Our objective is to design distributed control laws such that the controlled network reaches tracking consensus and, moreover, the associated cost is smaller than a given tolerance for all initial states bounded in norm by a given radius. We establish a centralized design method for computing such suboptimal control laws, involving the solution of a single Riccati inequality of dimension equal to the dimension of the local agent dynamics, and the smallest and the largest eigenvalue of a given positive definite matrix involving the underlying graph. The proposed design method is illustrated by a simulation example.
We consider the problem of controlling the group behavior of a large number of dynamic systems that are constantly interacting with each other. These systems are assumed to have identical dynamics (e.g., birds flock, robot swarm) and their group behavior can be modeled by a distribution. Thus, this problem can be viewed as an optimal control problem over the space of distributions. We propose a novel algorithm to compute a feedback control strategy so that, when adopted by the agents, the distribution of them would be transformed from an initial one to a target one over a finite time window. Our method is built on optimal transport theory but differs significantly from existing work in this area in that our method models the interactions among agents explicitly. From an algorithmic point of view, our algorithm is based on a generalized version of the proximal gradient descent algorithm and has a convergence guarantee with a sublinear rate. We further extend our framework to account for the scenarios where the agents are from multiple species. In the linear quadratic setting, the solution is characterized by coupled Riccati equations which can be solved in closed-form. Finally, several numerical examples are presented to illustrate our framework.