Do you want to publish a course? Click here

Unsupervised Controllable Text Formalization

379   0   0.0 ( 0 )
 Added by Parag Jain
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose a novel framework for controllable natural language transformation. Realizing that the requirement of parallel corpus is practically unsustainable for controllable generation tasks, an unsupervised training scheme is introduced. The crux of the framework is a deep neural encoder-decoder that is reinforced with text-transformation knowledge through auxiliary modules (called scorers). The scorers, based on off-the-shelf language processing tools, decide the learning scheme of the encoder-decoder based on its actions. We apply this framework for the text-transformation task of formalizing an input text by improving its readability grade; the degree of required formalization can be controlled by the user at run-time. Experiments on public datasets demonstrate the efficacy of our model towards: (a) transforming a given text to a more formal style, and (b) introducing appropriate amount of formalness in the output text pertaining to the input control. Our code and datasets are released for academic use.



rate research

Read More

61 - Yi Ren , Yangjun Ruan , Xu Tan 2019
Neural network based end-to-end text to speech (TTS) has significantly improved the quality of synthesized speech. Prominent methods (e.g., Tacotron 2) usually first generate mel-spectrogram from text, and then synthesize speech from the mel-spectrogram using vocoder such as WaveNet. Compared with traditional concatenative and statistical parametric approaches, neural network based end-to-end models suffer from slow inference speed, and the synthesized speech is usually not robust (i.e., some words are skipped or repeated) and lack of controllability (voice speed or prosody control). In this work, we propose a novel feed-forward network based on Transformer to generate mel-spectrogram in parallel for TTS. Specifically, we extract attention alignments from an encoder-decoder based teacher model for phoneme duration prediction, which is used by a length regulator to expand the source phoneme sequence to match the length of the target mel-spectrogram sequence for parallel mel-spectrogram generation. Experiments on the LJSpeech dataset show that our parallel model matches autoregressive models in terms of speech quality, nearly eliminates the problem of word skipping and repeating in particularly hard cases, and can adjust voice speed smoothly. Most importantly, compared with autoregressive Transformer TTS, our model speeds up mel-spectrogram generation by 270x and the end-to-end speech synthesis by 38x. Therefore, we call our model FastSpeech.
The variational autoencoder (VAE) can learn the manifold of natural images on certain datasets, as evidenced by meaningful interpolating or extrapolating in the continuous latent space. However, on discrete data such as text, it is unclear if unsupervised learning can discover similar latent space that allows controllable manipulation. In this work, we find that sequence VAEs trained on text fail to properly decode when the latent codes are manipulated, because the modified codes often land in holes or vacant regions in the aggregated posterior latent space, where the decoding network fails to generalize. Both as a validation of the explanation and as a fix to the problem, we propose to constrain the posterior mean to a learned probability simplex, and performs manipulation within this simplex. Our proposed method mitigates the latent vacancy problem and achieves the first success in unsupervised learning of controllable representations for text. Empirically, our method outperforms unsupervised baselines and strong supervised approaches on text style transfer, and is capable of performing more flexible fine-grained control over text generation than existing methods.
We present a deep generative model for unsupervised text style transfer that unifies previously proposed non-generative techniques. Our probabilistic approach models non-parallel data from two domains as a partially observed parallel corpus. By hypothesizing a parallel latent sequence that generates each observed sequence, our model learns to transform sequences from one domain to another in a completely unsupervised fashion. In contrast with traditional generative sequence models (e.g. the HMM), our model makes few assumptions about the data it generates: it uses a recurrent language model as a prior and an encoder-decoder as a transduction distribution. While computation of marginal data likelihood is intractable in this model class, we show that amortized variational inference admits a practical surrogate. Further, by drawing connections between our variational objective and other recent unsupervised style transfer and machine translation techniques, we show how our probabilistic view can unify some known non-generative objectives such as backtranslation and adversarial loss. Finally, we demonstrate the effectiveness of our method on a wide range of unsupervised style transfer tasks, including sentiment transfer, formality transfer, word decipherment, author imitation, and related language translation. Across all style transfer tasks, our approach yields substantial gains over state-of-the-art non-generative baselines, including the state-of-the-art unsupervised machine translation techniques that our approach generalizes. Further, we conduct experiments on a standard unsupervised machine translation task and find that our unified approach matches the current state-of-the-art.
162 - Youzhi Tian , Zhiting Hu , Zhou Yu 2018
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving model that leverages linguistic information in the structured fine-grained supervisions to better preserve the style-independent content during style transfer. In particular, we achieve the goal by devising rich model objectives based on both the sentences lexical information and a language model that conditions on content. The resulting model therefore is encouraged to retain the semantic meaning of the target sentences. We perform extensive experiments that compare our model to other existing approaches in the tasks of sentiment and political slant transfer. Our model achieves significant improvement in terms of both content preservation and style transfer in automatic and human evaluation.
Current summarization systems yield generic summaries that are disconnected from users preferences and expectations. To address this limitation, we present CTRLsum, a novel framework for controllable summarization. Our approach enables users to control multiple aspects of generated summaries by interacting with the summarization system through textual input in the form of a set of keywords or descriptive prompts. Using a single unified model, CTRLsum is able to achieve a broad scope of summary manipulation at inference time without requiring additional human annotations or pre-defining a set of control aspects during training. We quantitatively demonstrate the effectiveness of our approach on three domains of summarization datasets and five control aspects: 1) entity-centric and 2) length-controllable summarization, 3) contribution summarization on scientific papers, 4) invention purpose summarization on patent filings, and 5) question-guided summarization on news articles in a reading comprehension setting. Moreover, when used in a standard, uncontrolled summarization setting, CTRLsum achieves state-of-the-art results on the CNN/DailyMail dataset. Code and model checkpoints are available at https://github.com/salesforce/ctrl-sum

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا