Do you want to publish a course? Click here

Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy

302   0   0.0 ( 0 )
 Added by Stanislav Nikolov
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Over half a million individuals are diagnosed with head and neck cancer each year worldwide. Radiotherapy is an important curative treatment for this disease, but it requires manual time consuming delineation of radio-sensitive organs at risk (OARs). This planning process can delay treatment, while also introducing inter-operator variability with resulting downstream radiation dose differences. While auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying and achieving expert performance remain. Adopting a deep learning approach, we demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck OARs commonly segmented in clinical practice. The model was trained on a dataset of 663 deidentified computed tomography (CT) scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus OAR definitions. We demonstrate the models clinical applicability by assessing its performance on a test set of 21 CT scans from clinical practice, each with the 21 OARs segmented by two independent experts. We also introduce surface Dice similarity coefficient (surface DSC), a new metric for the comparison of organ delineation, to quantify deviation between OAR surface contours rather than volumes, better reflecting the clinical task of correcting errors in the automated organ segmentations. The models generalisability is then demonstrated on two distinct open source datasets, reflecting different centres and countries to model training. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.



rate research

Read More

OAR segmentation is a critical step in radiotherapy of head and neck (H&N) cancer, where inconsistencies across radiation oncologists and prohibitive labor costs motivate automated approaches. However, leading methods using standard fully convolutional network workflows that are challenged when the number of OARs becomes large, e.g. > 40. For such scenarios, insights can be gained from the stratification approaches seen in manual clinical OAR delineation. This is the goal of our work, where we introduce stratified organ at risk segmentation (SOARS), an approach that stratifies OARs into anchor, mid-level, and small & hard (S&H) categories. SOARS stratifies across two dimensions. The first dimension is that distinct processing pipelines are used for each OAR category. In particular, inspired by clinical practices, anchor OARs are used to guide the mid-level and S&H categories. The second dimension is that distinct network architectures are used to manage the significant contrast, size, and anatomy variations between different OARs. We use differentiable neural architecture search (NAS), allowing the network to choose among 2D, 3D or Pseudo-3D convolutions. Extensive 4-fold cross-validation on 142 H&N cancer patients with 42 manually labeled OARs, the most comprehensive OAR dataset to date, demonstrates that both pipeline- and NAS-stratification significantly improves quantitative performance over the state-of-the-art (from 69.52% to 73.68% in absolute Dice scores). Thus, SOARS provides a powerful and principled means to manage the highly complex segmentation space of OARs.
151 - Markus D. Foote 2018
Radiation therapy presents a need for dynamic tracking of a target tumor volume. Fiducial markers such as implanted gold seeds have been used to gate radiation delivery but the markers are invasive and gating significantly increases treatment time. Pretreatment acquisition of a respiratory correlated 4DCT allows for determination of accurate motion tracking which is useful in treatment planning. We design a patient-specific motion subspace and a deep convolutional neural network to recover anatomical positions from a single fluoroscopic projection in real-time. We use this deep network to approximate the nonlinear inverse of a diffeomorphic deformation composed with radiographic projection. This network recovers subspace coordinates to define the patient-specific deformation of the lungs from a baseline anatomic position. The geometric accuracy of the subspace deformations on real patient data is similar to accuracy attained by original image registration between individual respiratory-phase image volumes.
Mass segmentation provides effective morphological features which are important for mass diagnosis. In this work, we propose a novel end-to-end network for mammographic mass segmentation which employs a fully convolutional network (FCN) to model a potential function, followed by a CRF to perform structured learning. Because the mass distribution varies greatly with pixel position, the FCN is combined with a position priori. Further, we employ adversarial training to eliminate over-fitting due to the small sizes of mammogram datasets. Multi-scale FCN is employed to improve the segmentation performance. Experimental results on two public datasets, INbreast and DDSM-BCRP, demonstrate that our end-to-end network achieves better performance than state-of-the-art approaches. footnote{https://github.com/wentaozhu/adversarial-deep-structural-networks.git}
Purpose: Organ-at-risk (OAR) delineation is a key step for cone-beam CT (CBCT) based adaptive radiotherapy planning that can be a time-consuming, labor-intensive, and subject-to-variability process. We aim to develop a fully automated approach aided by synthetic MRI for rapid and accurate CBCT multi-organ contouring in head-and-neck (HN) cancer patients. MRI has superb soft-tissue contrasts, while CBCT offers bony-structure contrasts. Using the complementary information provided by MRI and CBCT is expected to enable accurate multi-organ segmentation in HN cancer patients. In our proposed method, MR images are firstly synthesized using a pre-trained cycle-consistent generative adversarial network given CBCT. The features of CBCT and synthetic MRI are then extracted using dual pyramid networks for final delineation of organs. CBCT images and their corresponding manual contours were used as pairs to train and test the proposed model. Quantitative metrics including Dice similarity coefficient (DSC) were used to evaluate the proposed method. The proposed method was evaluated on a cohort of 65 HN cancer patients. CBCT images were collected from those patients who received proton therapy. Overall, DSC values of 0.87, 0.79/0.79, 0.89/0.89, 0.90, 0.75/0.77, 0.86, 0.66, 0.78/0.77, 0.96, 0.89/0.89, 0.832, and 0.84 for commonly used OARs for treatment planning including brain stem, left/right cochlea, left/right eye, larynx, left/right lens, mandible, optic chiasm, left/right optic nerve, oral cavity, left/right parotid, pharynx, and spinal cord, respectively, were achieved. In this study, we developed a synthetic MRI-aided HN CBCT auto-segmentation method based on deep learning. It provides a rapid and accurate OAR auto-delineation approach, which can be used for adaptive radiation therapy.
The purpose of this study is to develop a deep learning based method that can automatically generate segmentations on cone-beam CT (CBCT) for head and neck online adaptive radiation therapy (ART), where expert-drawn contours in planning CT (pCT) can serve as prior knowledge. Due to lots of artifacts and truncations on CBCT, we propose to utilize a learning based deformable image registration method and contour propagation to get updated contours on CBCT. Our method takes CBCT and pCT as inputs, and output deformation vector field and synthetic CT (sCT) at the same time by jointly training a CycleGAN model and 5-cascaded Voxelmorph model together.The CycleGAN serves to generate sCT from CBCT, while the 5-cascaded Voxelmorph serves to warp pCT to sCTs anatommy. The segmentation results were compared to Elastix, Voxelmorph and 5-cascaded Voxelmorph on 18 structures including left brachial plexus, right brachial plexus, brainstem, oral cavity, middle pharyngeal constrictor, superior pharyngeal constrictor, inferior pharyngeal constrictor, esophagus, nodal gross tumor volume, larynx, mandible, left masseter, right masseter, left parotid gland, right parotid gland, left submandibular gland, right submandibular gland, and spinal cord. Results show that our proposed method can achieve average Dice similarity coefficients and 95% Hausdorff distance of 0.83 and 2.01mm. As compared to other methods, our method has shown better accuracy to Voxelmorph and 5-cascaded Voxelmorph, and comparable accuracy to Elastix but much higher efficiency. The proposed method can rapidly and simultaneously generate sCT with correct CT numbers and propagate contours from pCT to CBCT for online ART re-planning.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا