Do you want to publish a course? Click here

The Belle II Core Software

70   0   0.0 ( 0 )
 Added by Thomas Kuhr
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modern high-energy physics (HEP) enterprises, such as the Belle II experiment at the KEK laboratory in Japan, create huge amounts of data. Sophisticated algorithms for simulation, reconstruction, visualization, and analysis are required to fully exploit the potential of these data. We describe the core components of the Belle II software that provide the foundation for the development of complex algorithms and their efficient application on large data sets.



rate research

Read More

The advent of computing resources with co-processors, for example Graphics Processing Units (GPU) or Field-Programmable Gate Arrays (FPGA), for use cases like the CMS High-Level Trigger (HLT) or data processing at leadership-class supercomputers imposes challenges for the current data processing frameworks. These challenges include developing a model for algorithms to offload their computations on the co-processors as well as keeping the traditional CPU busy doing other work. The CMS data processing framework, CMSSW, implements multithreading using the Intel Threading Building Blocks (TBB) library, that utilizes tasks as concurrent units of work. In this paper we will discuss a generic mechanism to interact effectively with non-CPU resources that has been implemented in CMSSW. In addition, configuring such a heterogeneous system is challenging. In CMSSW an application is configured with a configuration file written in the Python language. The algorithm types are part of the configuration. The challenge therefore is to unify the CPU and co-processor settings while allowing their implementations to be separate. We will explain how we solved these challenges while minimizing the necessary changes to the CMSSW framework. We will also discuss on a concrete example how algorithms would offload work to NVIDIA GPUs using directly the CUDA API.
197 - T. Abe , I. Adachi , K. Adamczyk 2010
The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.
This paper describes the track-finding algorithm that is used for event reconstruction in the Belle II experiment operating at the SuperKEKB B-factory in Tsukuba, Japan. The algorithm is designed to balance the requirements of a high efficiency to find charged particles with a good track parameter resolution, a low rate of spurious tracks, and a reasonable demand on CPU resources. The software is implemented in a flexible, modular manner and employs a diverse selection of global and local track-finding algorithms to achieve an optimal performance.
Recently, it was pointed out that the electron and muon g-2 discrepancies can be explained simultaneously by a flavor-violating axion-like particle (ALP). We show that the parameter regions favored by the muon g-2 are already excluded by the muonium-antimuonium oscillation bound. In contrast, those for the electron g-2 can be consistent with this bound when the ALP is heavier than 1.5 GeV. We propose to search for a signature of the same-sign and same-flavor lepton pairs and the forward-backward muon asymmetry to test the model at the Belle II experiment.
We discuss the feasibility of detecting the gauge boson of the $U(1)_{L_{mu}-L_{tau}}$ symmetry, which possesses a mass in the range between MeV and GeV, at the Belle-II experiment. The kinetic mixing between the new gauge boson $Z$ and photon is forbidden at the tree level and is radiatively induced. The leptonic force mediated by such a light boson is motivated by the discrepancy in muon anomalous magnetic moment and also the gap in the energy spectrum of cosmic neutrino. Defining the process $e^{+} e^{-} rightarrow gamma Z rightarrow gamma u bar{ u}~(missing~energy)$ to be the signal, we estimate the numbers of the signal and the background events and show the parameter region to which the Belle-II experiment will be sensitive. The signal process in the $L_{mu}-L_{tau}$ model is enhanced with a light $Z$, which is a characteristic feature differing from the dark photon models with a constant kinetic mixing. We find that the Belle-II experiment with the design luminosity will be sensitive to the $Z$ with the mass $M_{Z} lesssim 1 $ GeV and the new gauge coupling $g_{Z} gtrsim 8cdot 10^{-4}$, which covers a half of the unconstrained parameter region that explains the discrepancy in muon anomalous magnetic moment. The possibilities to improve the significance of the detection are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا