No Arabic abstract
We present the technical specifications and first results of the ESA-funded, lunar monitoring project NELIOTA (NEO Lunar Impacts and Optical TrAnsients) at the National Observatory of Athens, which aims to determine the size-frequency distribution of small Near-Earth Objects (NEOs) via detection of impact flashes on the surface of the Moon. For the purposes of this project a twin camera instrument was specially designed and installed at the 1.2 m Kryoneri telescope utilizing the fast-frame capabilities of scientific Complementary Metal-Oxide Semiconductor detectors (sCMOS). The system provides a wide field-of-view (17.0 $times$ 14.4) and simultaneous observations in two photometric bands (R and I), reaching limiting magnitudes of 18.7 mag in 10 sec in both bands at a 2.5 signal-to-noise level. This makes it a unique instrument that can be used for the detection of NEO impacts on the Moon, as well as for any astronomy projects that demand high-cadence multicolor observations. The wide field-of-view ensures that a large portion of the Moon is observed, while the simultaneous, high-cadence, monitoring in two photometric bands makes possible, for the first time, the determination of the temperatures of the impacts on the Moons surface and the validation of the impact flashes from a single site. Considering the varying background level on the Moons surface we demonstrate that the NELIOTA system can detect NEO impact flashes at a 2.5 signal-to-noise level of ~12.4 mag in the I-band and R-band for observations made at low lunar phases ~0.1. We report 31 NEO impact flashes detected during the first year of the NELIOTA campaign. The faintest flash was at 11.24 mag in the R-band (about two magnitudes fainter than ever observed before) at lunar phase 0.32. Our observations suggest a detection rate of $1.96 times 10^{-7}$ events $km^{-2} h^{-1}$.
We propose a suite of telescopes be deployed as part of the Artemis III human-crewed expedition to the lunar south pole, able to collect wide-field simultaneous far-ultraviolet (UV), near-UV, and optical band images with a fast cadence (10 seconds) of a single part of the sky for several hours continuously. Wide-field, high-cadence monitoring in the optical regime has provided new scientific breakthroughs in the fields of exoplanets, stellar astrophysics, and astronomical transients. Similar observations cannot be made in the UV from within Earths atmosphere, but are possible from the Moons surface. The proposed observations will enable studies of atmospheric escape from close-in giant exoplanets, exoplanet magnetospheres, the physics of stellar flare formation, the impact of stellar flares on exoplanet habitability, the internal stellar structure of hot, compact stars, and the early-time evolution of supernovae and novae to better understand their progenitors and formation mechanisms.
The Prime Focus Spectrograph (PFS) is a wide field multi-fiber spectrograph using the prime focus of the Subaru telescope, which is capable of observing up to 2400 astronomical objects simultaneously. The instrument control software will manage the observation procedure communicateing with subsystems such as the fiber positioner COBRA, the metrology camera system, and the spectrograph and camera systems. Before an exposure starts, the instrument control system needs to access to a database where target lists provided by observers are stored in advance, and accurately position fibers onto astronomical targets as requested therein. This fiber positioning will be carried out interacting with the metrology system which measures the fiber positions. In parallel, the control system can issue a command to point the telescope to the target position and to rotate the instrument rotator. Finally the telescope pointing and the rotator angle will be checked by imaging bright stars and checking their positions on the auto-guide and acquisition cameras. After the exposure finishes, the data are collected from the detector systems and are finalized as FITS files to archive with necessary information. The observation preparation software is required, given target lists and a sequence of observation, to find optimal fiber allocations with maximizing the number of guide stars. To carry out these operations efficiently, the control system will be integrated seamlessly with a database system which will store information necessary for observation execution such as fiber configurations. In this article, the conceptual system design of the observation preparation software and the instrument control software will be presented.
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph design for the prime focus of the 8.2m Subaru telescope. PFS will cover 1.3 degree diameter field with 2394 fibers to complement the imaging capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime Focus Instrument (PFI) provides the interface with the top structure of Subaru telescope and also accommodates the optical bench in which Cobra fiber positioners are located. In addition, the acquisition and guiding (A&G) cameras, the optical fiber positioner system, the cable wrapper, the fiducial fibers, illuminator, and viewer, the field element, and the telemetry system are located inside the PFI. The mechanical structure of the PFI was designed with special care such that its deflections sufficiently match those of the HSC Wide Field Corrector (WFC) so the fibers will stay on targets over the course of the observations within the required accuracy.
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final positioning accuracy between the fibers and observing targets of PFS is required to be less than 10um. The metrology camera system (MCS) serves as the optical encoder of the fiber motors for the configuring of fibers. MCS provides the fiber positions within a 5um error over the 45 cm focal plane. The information from MCS will be fed into the fiber positioner control system for the closed loop control. MCS will be located at the Cassegrain focus of Subaru telescope in order to to cover the whole focal plane with one 50M pixel Canon CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform spot size with a 10 micron FWHM across the field for reasonable sampling of PSF. Carbon fiber tubes are used to provide a stable structure over the operating conditions without focus adjustments. The CMOS sensor can be read in 0.8s to reduce the overhead for the fiber configuration. The positions of all fibers can be obtained within 0.5s after the readout of the frame. This enables the overall fiber configuration to be less than 2 minutes. MCS will be installed inside a standard Subaru Cassgrain Box. All components that generate heat are located inside a glycol cooled cabinet to reduce the possible image motion due to heat. The optics and camera for MCS have been delivered and tested. The mechanical parts and supporting structure are ready as of spring 2016. The integration of MCS will start in the summer of 2016.
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. The metrology camera system of PFS serves as the optical encoder of the COBRA fiber motors for the configuring of fibers. The 380mm diameter aperture metrology camera will locate at the Cassegrain focus of Subaru telescope to cover the whole focal plane with one 50M pixel Canon CMOS sensor. The metrology camera is designed to provide the fiber position information within 5{mu}m error over the 45cm focal plane. The positions of all fibers can be obtained within 1s after the exposure is finished. This enables the overall fiber configuration to be less than 2 minutes.