No Arabic abstract
We study the components of cool and warm/hot gas in the circumgalactic medium (CGM) of simulated galaxies and address the relative production of OVI by photoionization versus collisional ionization, as a function of halo mass, redshift, and distance from the galaxy halo center. This is done utilizing two different suites of zoom-in hydro-cosmological simulations, VELA (6 halos; $z>1$) and NIHAO (18 halos; to $z=0$), which provide a broad theoretical basis because they use different codes and physical recipes for star formation and feedback. In all halos studied in this work, we find that collisional ionization by thermal electrons dominates at high redshift, while photoionization of cool or warm gas by the metagalactic radiation takes over near $zsim2$. In halos of $sim 10^{12}M_{odot}$ and above, collisions become important again at $z<0.5$, while photoionization remains significant down to $z=0$ for less massive halos. In halos with $M_{textrm v}>3times10^{11}~M_{odot}$, at $zsim 0$ most of the photoionized OVI is in a warm, not cool, gas phase ($Tlesssim 3times 10^5$~K). We also find that collisions are dominant in the central regions of halos, while photoionization is more significant at the outskirts, around $R_{textrm v}$, even in massive halos. This too may be explained by the presence of warm gas or, in lower mass halos, by cool gas inflows.
We carry out a systematic investigation of the total mass density profile of massive (Mstar>2e11 Msun) early-type galaxies and its dependence on galactic properties and host halo mass with the aid of a variety of lensing/dynamical data and large mock galaxy catalogs. The latter are produced via semi-empirical models that, by design, are based on just a few basic input assumptions. Galaxies, with measured stellar masses, effective radii and S{e}rsic indices, are assigned, via abundance matching relations, host dark matter halos characterized by a typical LCDM profile. Our main results are as follows: (i) In line with observational evidence, our semi-empirical models naturally predict that the total, mass-weighted density slope at the effective radius gamma is not universal, steepening for more compact and/or massive galaxies, but flattening with increasing host halo mass. (ii) Models characterized by a Salpeter or variable initial mass function and uncontracted dark matter profiles are in good agreement with the data, while a Chabrier initial mass function and/or adiabatic contractions/expansions of the dark matter halos are highly disfavored. (iii) Currently available data on the mass density profiles of very massive galaxies (Mstar>1e12 Msun), with Mhalo>3e14 Msun, favor instead models with a stellar profile flatter than a S{e}rsic one in the very inner regions (r<3-5 kpc), and a cored NFW or Einasto dark matter profile with median halo concentration a factor of ~2 or <1.3, respectively, higher than those typically predicted by N-body numerical simulations.
We present a suite of high-resolution cosmological zoom-in simulations to $z=4$ of a $10^{12},{rm M}_{odot}$ halo at $z=0$, obtained using seven contemporary astrophysical simulation codes widely used in the numerical galaxy formation community. Physics prescriptions for gas cooling, heating, and star formation, are similar to the ones used in our previous {it AGORA} disk comparison but now account for the effects of cosmological processes. In this work, we introduce the most careful comparison yet of galaxy formation simulations run by different code groups, together with a series of four calibration steps each of which is designed to reduce the number of tunable simulation parameters adopted in the final run. After all the participating code groups successfully completed the calibration steps, we reach a suite of cosmological simulations with similar mass assembly histories down to $z=4$. With numerical accuracy that resolves the internal structure of a target halo, we find that the codes overall agree well with one another in e.g., gas and stellar properties, but also show differences in e.g., circumgalactic medium properties. We argue that, if adequately tested in accordance with our proposed calibration steps and common parameters, the results of high-resolution cosmological zoom-in simulations can be robust and reproducible. New code groups are invited to join this comparison by generating equivalent models by adopting the common initial conditions, the common easy-to-implement physics package, and the proposed calibration steps. Further analyses of the simulations presented here will be in forthcoming reports from our Collaboration.
We present a direct comparison of the Pan-Andromeda Archaeological Survey (PAndAS) observations of the stellar halo of M31 with the stellar halos of 6 galaxies from the Auriga simulations. We process the simulated halos through the Auriga2PAndAS pipeline and create PAndAS-like mocks that fold in all observational limitations of the survey data (foreground contamination from the Milky Way stars, incompleteness of the stellar catalogues, photometric uncertainties, etc). This allows us to study the survey data and the mocks in the same way and generate directly comparable density maps and radial density profiles. We show that the simulations are overall compatible with the observations. Nevertheless, some systematic differences exist, such as a preponderance for metal-rich stars in the mocks. While these differences could suggest that M31 had a different accretion history or has a different mass compared to the simulated systems, it is more likely a consequence of an under-quenching of the star formation history of galaxies, related to the resolution of the Auriga simulations. The direct comparison enabled by our approach offers avenues to improve our understanding of galaxy formation as they can help pinpoint the observable differences between observations and simulations. Ideally, this approach will be further developed through an application to other stellar halo simulations. To facilitate this step, we release the pipeline to generate the mocks, along with the six mocks presented and used in this contribution.
Halo assembly bias is the secondary dependence of the clustering of dark-matter haloes on their assembly histories at fixed halo mass. This established dependence is expected to manifest itself on the clustering of the galaxy population, a potential effect commonly known as galaxy assembly bias. Using the IllustrisTNG300 magnetohydrodynamical simulation, we analyse the dependence of the properties and clustering of galaxies on the shape of the specific mass accretion history of their hosting haloes (sMAH). We first show that several halo and galaxy properties strongly correlate with the slope of the sMAH ($beta$) at fixed halo mass. Namely, haloes with increasingly steeper $beta$ increment their halo masses faster at early times, and their hosted galaxies present larger stellar-to-halo mass ratios, lose their gas faster, reach the peak of their star formation histories at higher redshift, and become quenched earlier. We also demonstrate that $beta$ is more directly connected to these key galaxy formation properties than other broadly employed halo proxies, such as formation time. Finally, we measure the secondary dependence of galaxy clustering on $beta$ at fixed halo mass as a function of redshift. By tracing back the evolution of individual haloes, we show that the amplitude of the galaxy assembly bias signal for the progenitors of $z=0$ galaxies increases with redshift, reaching a factor of 2 at $z = 1$ for haloes of $M_mathrm{halo}=10^{11.5}-10^{12}$ $h^{-1}mathrm{M}_odot$. The measurement of the evolution of assembly bias along the merger tree provides a new theoretical perspective to the study of secondary bias. Our findings, which show a tight relationship between halo accretion and both the clustering and the observational properties of the galaxy population, have also important implications for the generation of mock catalogues for upcoming cosmological surveys.
We carry out a systematic investigation of the total mass density profile of massive (Mstar~3e11 Msun) early-type galaxies and its dependence on redshift, specifically in the range 0<z<1. We start from a large sample of SDSS early-type galaxies with stellar masses and effective radii measured assuming two different profiles, de Vaucouleurs and S{e}rsic. We assign dark matter haloes to galaxies via abundance matching relations with standard LCDM profiles and concentrations. We then compute the total, mass-weighted density slope at the effective radius gamma, and study its redshift dependence at fixed stellar mass. We find that a necessary condition to induce an increasingly flatter gamma at higher redshifts, as suggested by current strong lensing data, is to allow the intrinsic stellar profile of massive galaxies to be S{e}rsic and the input S{e}rsic index n to vary with redshift approximately as n(z)~(1+z)^(-1). This conclusion holds irrespective of the input Mstar-Mhalo relation, the assumed stellar initial mass function, or even the chosen level of adiabatic contraction in the model. Secondary contributors to the observed redshift evolution of gamma may come from an increased contribution at higher redshifts of adiabatic contraction and/or bottom-light stellar initial mass functions. The strong lensing selection effects we have simulated seem not to contribute to this effect. A steadily increasing S{e}rsic index with cosmic time is supported by independent observations, though it is not yet clear whether cosmological hierarchical models (e.g., mergers) are capable of reproducing such a fast and sharp evolution.