Do you want to publish a course? Click here

Searching Toward Pareto-Optimal Device-Aware Neural Architectures

214   0   0.0 ( 0 )
 Added by AnChieh Cheng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recent breakthroughs in Neural Architectural Search (NAS) have achieved state-of-the-art performance in many tasks such as image classification and language understanding. However, most existing works only optimize for model accuracy and largely ignore other important factors imposed by the underlying hardware and devices, such as latency and energy, when making inference. In this paper, we first introduce the problem of NAS and provide a survey on recent works. Then we deep dive into two recent advancements on extending NAS into multiple-objective frameworks: MONAS and DPP-Net. Both MONAS and DPP-Net are capable of optimizing accuracy and other objectives imposed by devices, searching for neural architectures that can be best deployed on a wide spectrum of devices: from embedded systems and mobile devices to workstations. Experimental results are poised to show that architectures found by MONAS and DPP-Net achieves Pareto optimality w.r.t the given objectives for various devices.

rate research

Read More

In this study, we introduce a novel platform Resource-Aware AutoML (RA-AutoML) which enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives, as well as resource and hard-ware constraints. RA-AutoML intelligently conducts Hyper-Parameter Search(HPS) as well as Neural Architecture Search (NAS) to build models optimizing predefined objectives. RA-AutoML is a versatile framework that allows user to prescribe many resource/hardware constraints along with objectives demanded by the problem at hand or business requirements. At its core, RA-AutoML relies on our in-house search-engine algorithm,MOBOGA, which combines a modified constraint-aware Bayesian Optimization and Genetic Algorithm to construct Pareto optimal candidates. Our experiments on CIFAR-10 dataset shows very good accuracy compared to results obtained by state-of-art neural network models, while subjected to resource constraints in the form of model size.
As a popular approach to modeling the dynamics of training overparametrized neural networks (NNs), the neural tangent kernels (NTK) are known to fall behind real-world NNs in generalization ability. This performance gap is in part due to the textit{label agnostic} nature of the NTK, which renders the resulting kernel not as textit{locally elastic} as NNs~citep{he2019local}. In this paper, we introduce a novel approach from the perspective of emph{label-awareness} to reduce this gap for the NTK. Specifically, we propose two label-aware kernels that are each a superimposition of a label-agnostic part and a hierarchy of label-aware parts with increasing complexity of label dependence, using the Hoeffding decomposition. Through both theoretical and empirical evidence, we show that the models trained with the proposed kernels better simulate NNs in terms of generalization ability and local elasticity.
139 - Yong Guo , Yaofo Chen , Yin Zheng 2021
Designing feasible and effective architectures under diverse computation budgets incurred by different applications/devices is essential for deploying deep models in practice. Existing methods often perform an independent architecture search for each target budget, which is very inefficient yet unnecessary. Moreover, the repeated independent search manner would inevitably ignore the common knowledge among different search processes and hamper the search performance. To address these issues, we seek to train a general architecture generator that automatically produces effective architectures for an arbitrary budget merely via model inference. To this end, we propose a Pareto-Frontier-aware Neural Architecture Generator (NAG) which takes an arbitrary budget as input and produces the Pareto optimal architecture for the target budget. We train NAG by learning the Pareto frontier (i.e., the set of Pareto optimal architectures) over model performance and computational cost (e.g., latency). Extensive experiments on three platforms (i.e., mobile, CPU, and GPU) show the superiority of the proposed method over existing NAS methods.
Common fairness definitions in machine learning focus on balancing notions of disparity and utility. In this work, we study fairness in the context of risk disparity among sub-populations. We are interested in learning models that minimize performance discrepancies across sensitive groups without causing unnecessary harm. This is relevant to high-stakes domains such as healthcare, where non-maleficence is a core principle. We formalize this objective using Pareto frontiers, and provide analysis, based on recent works in fairness, to exemplify scenarios were perfect fairness might not be feasible without doing unnecessary harm. We present a methodology for training neural networks that achieve our goal by dynamically re-balancing subgroups risks. We argue that even in domains where fairness at cost is required, finding a non-unnecessary-harm fairness model is the optimal initial step. We demonstrate this methodology on real case-studies of predicting ICU patient mortality, and classifying skin lesions from dermatoscopic images.
Convolutional Neural Networks (CNNs) have become common in many fields including computer vision, speech recognition, and natural language processing. Although CNN hardware accelerators are already included as part of many SoC architectures, the task of achieving high accuracy on resource-restricted devices is still considered challenging, mainly due to the vast number of design parameters that need to be balanced to achieve an efficient solution. Quantization techniques, when applied to the network parameters, lead to a reduction of power and area and may also change the ratio between communication and computation. As a result, some algorithmic solutions may suffer from lack of memory bandwidth or computational resources and fail to achieve the expected performance due to hardware constraints. Thus, the system designer and the micro-architect need to understand at early development stages the impact of their high-level decisions (e.g., the architecture of the CNN and the amount of bits used to represent its parameters) on the final product (e.g., the expected power saving, area, and accuracy). Unfortunately, existing tools fall short of supporting such decisions. This paper introduces a hardware-aware complexity metric that aims to assist the system designer of the neural network architectures, through the entire project lifetime (especially at its early stages) by predicting the impact of architectural and micro-architectural decisions on the final product. We demonstrate how the proposed metric can help evaluate different design alternatives of neural network models on resource-restricted devices such as real-time embedded systems, and to avoid making design mistakes at early stages.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا