Do you want to publish a course? Click here

Quantum Monodromy in the Isotropic 3-Dimensional Harmonic Oscillator

72   0   0.0 ( 0 )
 Added by Holger Waalkens
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators, one of which is the Hamiltonian. We show that the joint spectrum of the Hamilton operator, the $z$ component of the angular momentum, and a quartic integral obtained from separation in prolate spheroidal coordinates has quantum monodromy for sufficiently large energies. This means that one cannot globally assign quantum numbers to the joint spectrum. The effect can be classically explained by showing that the corresponding Liouville integrable system has a non-degenerate focus-focus point, and hence Hamiltonian monodromy.



rate research

Read More

We show the existence of Lorentz invariant Berry phases generated, in the Stueckleberg-Horwitz-Piron manifestly covariant quantum theory (SHP), by a perturbed four dimensional harmonic oscillator. These phases are associated with a fractional perturbation of the azimuthal symmetry of the oscillator. They are computed numerically by using time independent perturbation theory and the definition of the Berry phase generalized to the framework of SHP relativistic quantum theory.
The measurement of a quantum system becomes itself a quantum-mechanical process once the apparatus is internalized. That shift of perspective may result in different physical predictions for a variety of reasons. We present a model describing both system and apparatus and consisting of a harmonic oscillator coupled to a field. The equation of motion is a quantum stochastic differential equation. By solving it we establish the conditions ensuring that the two perspectives are compatible, in that the apparatus indeed measures the observable it is ideally supposed to.
As a generalization and extension of our previous paper {it J. Phys. A: Math. Theor. 53 055302} cite{AME2020}, in this work we study a quantum 4-body system in $mathbb{R}^d$ ($dgeq 3$) with quadratic and sextic pairwise potentials in the {it relative distances}, $r_{ij} equiv {|{bf r}_i - {bf r}_j |}$, between particles. Our study is restricted to solutions in the space of relative motion with zero total angular momentum ($S$-states). In variables $rho_{ij} equiv r_{ij}^2$, the corresponding reduced Hamiltonian of the system possesses a hidden $sl(7;{bf R})$ Lie algebra structure. In the $rho$-representation it is shown that the 4-body harmonic oscillator with arbitrary masses and unequal spring constants is exactly-solvable (ES). We pay special attention to the case of four equal masses and to atomic-like (where one mass is infinite, three others are equal), molecular two-center (two masses are infinite, two others are equal) and molecular three-center (three infinite masses) cases. In particular, exact results in the molecular case are compared with those obtained within the Born-Oppenheimer approximation. The first and second order symmetries of non-interacting system are searched. Also, the reduction to the lower dimensional cases $d=1,2$ is discussed. It is shown that for four body harmonic oscillator case there exists an infinite family of eigenfunctions which depend on the single variable which is the moment-of-inertia of the system.
The superintegrability of several Hamiltonian systems defined on three-dimensional configuration spaces of constant curvature is studied. We first analyze the properties of the Killing vector fields, Noether symmetries and Noether momenta. Then we study the superintegrability of the Harmonic Oscillator, the Smorodinsky-Winternitz (S-W) system and the Harmonic Oscillator with ratio of frequencies 1:1:2 and additional nonlinear terms on the 3-dimensional sphere $S^3$ ($kp>0)$ and on the hyperbolic space $H^3$ ($kp<0$). In the second part we present a study first of the Kepler problem and then of the Kepler problem with additional nonlinear terms in these two curved spaces, $S^3$ ($kp>0)$ and $H^3$ ($kp<0$). We prove their superintegrability and we obtain, in all the cases, the maximal number of functionally independent integrals of motion. All the mathematical expressions are presented using the curvature $kp$ as a parameter, in such a way that particularizing for $kp>0$, $kp=0$, or $kp<0$, the corresponding properties are obtained for the system on the sphere $S^3$, the Euclidean space $IE^3$, or the hyperbolic space $H^3$, respectively.
104 - Giovanni Rastelli 2016
We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born-Jordan formula, when producing different operators than the Weyls one, does not.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا