Do you want to publish a course? Click here

Itinerant Quantum Critical Point with Fermion Pockets and Hot Spots

206   0   0.0 ( 0 )
 Added by Zi Yang Meng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metallic quantum criticality is among the central theme in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under calling. In this work, we develop state-of-art large scale quantum Monte Carlo simulation technique and systematically investigate the itinerant quantum critical point on a 2D square lattice with antiferromagnetic spin fluctuations at wavevector $mathbf{Q}=(pi,pi)$ -- a problem that resembles the Fermi surface setup and low-energy antiferromagnetic fluctuations in high-Tc cuprates and other critical metals, which might be relevant to their non-Fermi-liquid behaviors. System sizes of $60times 60 times 320$ ($L times L times L_tau$) are comfortably accessed, and the quantum critical scaling behaviors are revealed with unprecedingly high precision. We found that the antiferromagnetic spin fluctuations introduce effective interactions among fermions and the fermions in return render the bare bosonic critical point into a new universality, different from both the bare Ising universality class and the Hertz-Mills-Moriya RPA prediction. At the quantum critical point, a finite anomalous dimension $etasim 0.125$ is observed in the bosonic propagator, and fermions at hot spots evolve into a non-Fermi-liquid. In the antiferromagnetically ordered metallic phase, fermion pockets are observed as energy gap opens up at the hot spots. These results bridge the recent theoretical and numerical developments in metallic quantum criticality and can be served as the stepping stone towards final understanding of the 2D correlated fermions interacting with gapless critical excitations.

rate research

Read More

A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.
A focus of recent experimental and theoretical studies on heavy fermion systems close to antiferromagnetic (AFM) quantum critical points (QCP) is directed toward revealing the nature of the fixed point, i.e., whether it is an itinerant antiferromagnet [spin density wave (SDW)] type or a locally-critical fixed point. The relevance of the local QCP was proposed to explain the E/T-scaling with an anomalous exponent observed for the AFM QCP of CeCu_{5.9}Au_{0.1}. In this work, we have investigated an AFM QCP of another archetypal heavy fermion system Ce(Ru_{1-x}Rh_x)_2Si_2 with x = 0 and 0.03 (sim x_c) using single-crystalline neutron scattering. Accurate measurements of the dynamical susceptibility Im[chi(Q,E)] at the AFM wave vector Q = 0.35 c^* have shown that Im[chi(Q,E)] is well described by a Lorentzian and its energy width Gamma(Q), i.e., the inverse correlation time depends on temperature as Gamma(Q) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in low temperature ranges.This critical exponent 3/2 proves that the QCP is controlled by the SDW QCP in three space dimensions studied by the renormalization group and self-consistent renormalization theories.
Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of $C_{4}$ rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple non-superconducting orders emerge are of particular interest. We consider the recently introduced (Phys. Rev. B 93, 085131 (2016)) spin-fermion model with overlapping hot spots on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at $(0,pi);;(pi,0)$ and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.
Recent experiments on quantum criticality in the Ge-substituted heavy-electron material YbRh2Si2 under magnetic field have revealed a possible non-Fermi liquid (NFL) strange metal (SM) state over a finite range of fields at low temperatures, which still remains a puzzle. In the SM region, the zero-field antiferromagnetism is suppressed. Above a critical field, it gives way to a heavy Fermi liquid with Kondo correlation. The T (temperature)-linear resistivity and the T-logarithmic followed by a power-law singularity in the specific heat coefficient at low T, salient NFL behaviours in the SM region, are un-explained. We offer a mechanism to address these open issues theoretically based on the competition between a quasi-2d fluctuating short-ranged resonant- valence-bonds (RVB) spin-liquid and the Kondo correlation near criticality. Via a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an anti- ferromagnetic Kondo-Heisenberg model, we identify the critical point, and explain remarkably well both the crossovers and the SM behaviour.
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of the spin density wave (SDW) becomes more incommensurate as x increases in accordance with the two band model. At xc=0.037 we have found temperature dependent, resolution limited elastic scattering at 4 incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to 2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction measurements indicate that the electronic structure of Cr is robust, and that tuning Cr to its QCP results not in the suppression of antiferromagnetism, but instead enables new spin ordering due to novel nesting of the Fermi surface of Cr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا