Do you want to publish a course? Click here

Strange metal state near a heavy-fermion quantum critical point

73   0   0.0 ( 0 )
 Added by Chung-Hou Chung
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent experiments on quantum criticality in the Ge-substituted heavy-electron material YbRh2Si2 under magnetic field have revealed a possible non-Fermi liquid (NFL) strange metal (SM) state over a finite range of fields at low temperatures, which still remains a puzzle. In the SM region, the zero-field antiferromagnetism is suppressed. Above a critical field, it gives way to a heavy Fermi liquid with Kondo correlation. The T (temperature)-linear resistivity and the T-logarithmic followed by a power-law singularity in the specific heat coefficient at low T, salient NFL behaviours in the SM region, are un-explained. We offer a mechanism to address these open issues theoretically based on the competition between a quasi-2d fluctuating short-ranged resonant- valence-bonds (RVB) spin-liquid and the Kondo correlation near criticality. Via a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an anti- ferromagnetic Kondo-Heisenberg model, we identify the critical point, and explain remarkably well both the crossovers and the SM behaviour.



rate research

Read More

150 - Y. Y. Chang , F. Hsu , S. Kirchner 2018
The heavy fermion CeMIn5 family with M = Co, Rh, Ir provide a prototypical example of strange superconductors with unconventional d-wave pairing and strange metal normal state, emerged near an antiferromagnetic quantum critical point. The microscopic origin of strange superconductor and its link to antiferromagnetic quantum criticality and strange metal state are still open issues. We propose a microscopic mechanism for strange superconductor, based on the coexistence and competition between the Kondo correlation and the quasi-2d short-ranged antiferromagnetic resonating-valence-bond spin-liquid near the antiferromagnetic quantum critical point via a large-N Kondo-Heisenberg model and renormalization group analysis beyond the mean-field level. We find the coexistence (competition) between the two types of correlations well explains the overall features of superconducting and strange metal state. The interplay of these two effects provides a qualitative understanding on how superconductivity emerges from the SM state and the observed superconducting phase diagrams for CeMIn5 near the anti-ferromagnetic quantum critical point.
A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02, 0.037) show that the ordering moment and the Neel temperature are continuously suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The wave vector Q of the spin density wave (SDW) becomes more incommensurate as x increases in accordance with the two band model. At xc=0.037 we have found temperature dependent, resolution limited elastic scattering at 4 incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to 2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction measurements indicate that the electronic structure of Cr is robust, and that tuning Cr to its QCP results not in the suppression of antiferromagnetism, but instead enables new spin ordering due to novel nesting of the Fermi surface of Cr.
In metals near a quantum critical point, the electrical resistance is thought to be determined by the lifetime of the carriers of current, rather than the scattering from defects. The observation of $T$-linear resistivity suggests that the lifetime only depends on temperature, implying the vanishing of an intrinsic energy scale and the presence of a quantum critical point. Our data suggest that this concept extends to the magnetic field dependence of the resistivity in the unconventional superconductor BaFe$_2$(As$_{1-x}$P$_{x}$)$_2$ near its quantum critical point. We find that the lifetime depends on magnetic field in the same way as it depends on temperature, scaled by the ratio of two fundamental constants $mu_B/k_B$. These measurements imply that high magnetic fields probe the same quantum dynamics that give rise to the $T$-linear resistivity, revealing a novel kind of magnetoresistance that does not depend on details of the Fermi surface, but rather on the balance of thermal and magnetic energy scales. This opens new opportunities for the investigation of transport near a quantum critical point by using magnetic fields to couple selectively to charge, spin and spatial anisotropies.
We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi$_3$. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Neel temperature. At $unit{23.6}{kbar}$, the ordered magnetic moments are fully suppressed via a second-order phase transition, and $T_{rm{N}}$ is zero. Thus, we directly observed the quantum critical point at $unit{23.6}{kbar}$ hidden inside the superconducting phase of CeRhSi$_3$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا