Do you want to publish a course? Click here

The Evolution of Cataclysmic Variables

154   0   0.0 ( 0 )
 Added by Christian Knigge
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the review is divided into three parts. The first part outlines the theoretical principles of CV evolution, focusing specifically on the standard disrupted magnetic braking model. The second part describes how some of the most fundamental predictions this model are at last being test observationally. Finally, the third part describes recent efforts to actually reconstruct the evolution path of CVs empirically. Some of these efforts suggest that angular momentum loss below the period gap must be enhanced relative to the purely gravitational-radiation-driven losses assumed in the standard model.



rate research

Read More

We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction >~ 90% of the secondary at velocities ~500-1000 km/s within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity > 1e38 erg/s, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ~300-5000 L_sun, effective temperature T_eff ~ 3000 K and lifetime ~1e4-1e5 yr. We predict that ~1e3-1e4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.
We present the results of MeerKAT radio observations of eleven nearby novalike cataclysmic variables. We have detected radio emission from IM Eri, RW Sex, V3885 Sgr and V603 Aql. While RW Sex, V3885 Sgr and V603 Aql had been previously detected, this is the first reported radio detection of IM Eri. Our observations have doubled the sample of non-magnetic CVs with sensitive radio data. We observe that at our radio detection limits, a specific optical luminosity $gtrsim 2.2times 10^{18}$ erg/s/Hz (corresponding to $M_V lesssim 6.0$) is required to produce a radio detection. We also observe that the X-ray and radio luminosities of our detected novalikes are on an extension of the $L_{X} propto L_{R}^{sim 0.7}$ power law originally proposed for non-pulsating neutron star low-mass X-ray binaries. We find no other correlations between the radio emission and emission in other wavebands or any other system parameters for the existing sample of radio-detected non-magnetic CVs. We measure in-band (0.9-1.7 GHz) radio spectral indices that are consistent with reports from earlier work. Finally, we constructed broad spectral energy distributions for our sample from published multi-wavelength data, and use them to place constraints on the mass transfer rates of these systems.
95 - A. Schwope 2018
The space density of the various classes of cataclysmic variables (CVs) could only be weakly constrained in the past. Reasons were the small number of objects in complete X-ray flux-limited samples and the difficulty to derive precise distances to CVs. The former limitation still exists. Here the impact of Gaia parallaxes and implied distances on the space density of X-ray selected complete, flux-limited samples is studied. The samples are described in the literature, those of non-magnetic CVs are based on ROSAT (RBS - ROSAT Bright Survey & NEP -- North Ecliptic Pole), that of the Intermediate Polars stems from Swift/BAT. All CVs appear to be rarer than previously thought, although the new values are all within the errors of past studies. Upper limits at 90% confidence for the space densities of non-magnetic CVs are $rho_{rm RBS} < 1.1 times 10^{-6}$ pc$^{-3}$, and $rho_{rm RBS+NEP} < 5.1 times 10^{-6}$ p$^{-3}$, for an assumed scale height of $h=260$ pc and $rho_{rm IPs} < 1.3 times 10^{-7}$ p$^{-3}$ for the long-period Intermediate Polars at a scale height of 120 pc. Most of the distances to the IPs were under-estimated in the past. The upper limits to the space densities are only valid in the case where CVs do not have lower X-ray luminosities than the lowest-luminosity member of the sample. These results need consolidation by larger sample sizes, soon to be established through sensitive X-ray all-sky surveys to be performed with eROSITA on the Spektrum-X-Gamma mission.
Using selection criteria based on amplitude, time and color, we have identified 329 objects as known or candidate cataclysmic variable (CVs) during the first year of testing and operation of the Zwicky Transient Facility (ZTF). Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3-562 days of observations, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys which have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our followup spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high excitation HeII emission, including candidates for an AM CVn, a polar and an intermediate polar. Our results demonstrate that a complete survey of the galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا