No Arabic abstract
For a compact Poisson-Lie group $K$, the homogeneous space $K/T$ carries a family of symplectic forms $omega_xi^s$, where $xi in mathfrak{t}^*_+$ is in the positive Weyl chamber and $s in mathbb{R}$. The symplectic form $omega_xi^0$ is identified with the natural $K$-invariant symplectic form on the $K$ coadjoint orbit corresponding to $xi$. The cohomology class of $omega_xi^s$ is independent of $s$ for a fixed value of $xi$. In this paper, we show that as $sto -infty$, the symplectic volume of $omega_xi^s$ concentrates in arbitrarily small neighbourhoods of the smallest Schubert cell in $K/T cong G/B$. This strengthens earlier results [9,10] and is a step towards a conjectured construction of global action-angle coordinates on $Lie(K)^*$ [4, Conjecture 1.1].
We study the existence of symplectic resolutions of quotient singularities V/G where V is a symplectic vector space and G acts symplectically. Namely, we classify the symplectically irreducible and imprimitive groups, excluding those of the form $K rtimes S_2$ where $K < SL_2(C)$, for which the corresponding quotient singularity admits a projective symplectic resolution. As a consequence, for $dim V eq 4$, we classify all quotient singularities $V/G$ admitting a projective symplectic resolution which do not decompose as a product of smaller-dimensional quotient singularities, except for at most four explicit singularities, that occur in dimensions at most 10, for whom the question of existence remains open.
We introduce new invariants associated to collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants involves various flavors of Floer theory. We present applications to approximation theory on symplectic manifolds and to Hamiltonian dynamics.
We generalize the notion of weight for Gelfand-Fuks cohomology theory of symplectic vector spaces to the homogeneous Poisson vector spaces, and try some combinatorial approach to Poisson cohomology groups.
This paper is a fusion of a survey and a research article. We focus on certain rigidity phenomena in function spaces associated to a symplectic manifold. Our starting point is a lower bound obtained in an earlier paper with Zapolsky for the uniform norm of the Poisson bracket of a pair of functions in terms of symplectic quasi-states. After a short review of the theory of symplectic quasi-states, we extend this bound to the case of iterated Poisson brackets. A new technical ingredient is the use of symplectic integrators. In addition, we discuss some applications to symplectic approximation theory and present a number of open problems.
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ is either a direct sum of line bundles or $delta_i$-unstable for some $delta_i$. So we partially answer a problem posted by Mu~{n}oz-Occhetta-Sol{a} Conde. In particular, if $X$ is a generalized Grassmannian $mathcal{G}$ and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ splits as a direct sum of line bundles. We improve the main theorem of Mu~{n}oz-Occhetta-Sol{a} Conde when $X$ is a generalized Grassmannian by considering the Chow rings. Moreover, by calculating the relative tangent bundles between two rational homogeneous spaces, we give explicit bounds for the generalized Grauert-M{u}lich-Barth theorem on rational homogeneous spaces.