No Arabic abstract
We derive the partition function of 5d ${cal N}=1$ gauge theories on the manifold $S^3_b times Sigma_{frak g}$ with a partial topological twist along the Riemann surface, $Sigma_{frak g}$. This setup is a higher dimensional uplift of the two-dimensional A-twist, and the result can be expressed as a sum over solutions of Bethe-Ansatz-type equations, with the computation receiving nontrivial non-perturbative contributions. We study this partition function in the large $N$ limit, where it is related to holographic RG flows between asymptotically locally AdS$_6$ and AdS$_4$ spacetimes, reproducing known holographic relations between the corresponding free energies on $S^{5}$ and $S^{3}$ and predicting new ones. We also consider cases where the 5d theory admits a UV completion as a 6d SCFT, such as the maximally supersymmetric ${cal N}=2$ Yang-Mills theory, in which case the partition function computes the 4d index of general class ${cal S}$ theories, which we verify in certain simplifying limits. Finally, we comment on the generalization to ${cal M}_3 times Sigma_{frak g}$ with more general three-manifolds ${cal M}_3$ and focus in particular on ${cal M}_3=Sigma_{frak g}times S^{1}$, in which case the partition function relates to the entropy of black holes in AdS$_6$.
We propose a set of novel expansions of Nekrasovs instanton partition functions. Focusing on 5d supersymmetric pure Yang-Mills theory with unitary gauge group on $mathbb{C}^2_{q,t^{-1}} times mathbb{S}^1$, we show that the instanton partition function admits expansions in terms of partition functions of unitary gauge theories living on the 3d subspaces $mathbb{C}_{q} times mathbb{S}^1$, $mathbb{C}_{t^{-1}} times mathbb{S}^1$ and their intersection along $mathbb{S}^1$. These new expansions are natural from the BPS/CFT viewpoint, as they can be matched with $W_{q,t}$ correlators involving an arbitrary number of screening charges of two kinds. Our constructions generalize and interpolate existing results in the literature.
We study three-dimensional $mathcal{N}=2$ supersymmetric gauge theories on $mathcal{M}_{g,p}$, an oriented circle bundle of degree $p$ over a closed Riemann surface, $Sigma_g$. We compute the $mathcal{M}_{g,p}$ supersymmetric partition function and correlation functions of supersymmetric loop operators. This uncovers interesting relations between observables on manifolds of different topologies. In particular, the familiar supersymmetric partition function on the round $S^3$ can be understood as the expectation value of a so-called fibering operator on $S^2 times S^1$ with a topological twist. More generally, we show that the 3d $mathcal{N}=2$ supersymmetric partition functions (and supersymmetric Wilson loop correlation functions) on $mathcal{M}_{g,p}$ are fully determined by the two-dimensional A-twisted topological field theory obtained by compactifying the 3d theory on a circle. We give two complementary derivations of the result. We also discuss applications to F-maximization and to three-dimensional supersymmetric dualities.
We present a general prescription by which we can systematically compute exact partition functions of five-dimensional supersymmetric theories which arise in Higgs branches of the $T_N$ theory. The theories may be realized by webs of 5-branes whose dual geometries are non-toric. We have checked our method by calculating the partition functions of the theories realized in various Higgs branches of the $T_3$ theory. A particularly interesting example is the $E_8$ theory which can be obtained by Higgsing the $T_6$ theory. We explicitly compute the partition function of the $E_8$ theory and find the agreement with the field theory result as well as the enhancement of the global symmetry to $E_8$.
We study properties of the full partition function for the $U(1)$ 5D $mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function $G_2^C$ associated with a certain moment map cone $C$. The answer exhibits a curious $SL(4,mathbb{Z})$ modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5D supersymmetric partition function with the insertion of defects of various co-dimensions.
Localization methods have produced explicit expressions for the sphere partition functions of (2,2) superconformal field theories. The mirror symmetry conjecture predicts an IR duality between pairs of Abelian gauged linear sigma models, a class of which describe families of Calabi-Yau manifolds realizable as complete intersections in toric varieties. We investigate this prediction for the sphere partition functions and find agreement between that of a model and its mirror up to the scheme-dependent ambiguities inherent in the definitions of these quantities.