No Arabic abstract
We show that flat bands can be categorized into two distinct classes, that is, singular and nonsingular flat bands, by exploiting the singular behavior of their Bloch wave functions in momentum space. In the case of a singular flat band, its Bloch wave function possesses immovable discontinuities generated by the band-crossing with other bands, and thus the vector bundle associated with the flat band cannot be defined. This singularity precludes the compact localized states from forming a complete set spanning the flat band. Once the degeneracy at the band crossing point is lifted, the singular flat band becomes dispersive and can acquire a finite Chern number in general, suggesting a new route for obtaining a nearly flat Chern band. On the other hand, the Bloch wave function of a nonsingular flat band has no singularity, and thus forms a vector bundle. A nonsingular flat band can be completely isolated from other bands while preserving the perfect flatness. All one-dimensional flat bands belong to the nonsingular class. We show that a singular flat band displays a novel bulk-boundary correspondence such that the presence of the robust boundary mode is guaranteed by the singularity of the Bloch wave function. Moreover, we develop a general scheme to construct a flat band model Hamiltonian in which one can freely design its singular or nonsingular nature. Finally, we propose a general formula for the compact localized state spanning the flat band, which can be easily implemented in numerics and offer a basis set useful in analyzing correlation effects in flat bands.
In a flat Bloch band the kinetic energy is quenched and single particles cannot propagate since they are localized due to destructive interference. Whether this remains true in the presence of interactions is a challenging question because a flat dispersion usually leads to highly correlated ground states. Here we compute numerically the ground state energy of lattice models with completely flat band structure in a ring geometry. We find that the energy as a function of the magnetic flux threading the ring has a half-flux quantum $Phi_0/2 = hc/(2e)$ period, indicating that only bound pairs of particles with charge $2e$ are propagating, while single quasiparticles with charge $e$ remain localized. We show analytically in one dimension that in fact the whole many-body spectrum has the same periodicity. Our analytical arguments are valid for both bosons and fermions, for generic interactions respecting some symmetries of the lattice and at arbitrary temperatures. Moreover we construct an extensive number of exact conserved quantities for the one dimensional lattice models. These conserved quantities are associated to the occupation of localized single quasiparticle states. Our results imply that in lattice models with flat bands preformed pairs dominate transport even above the critical temperature of the transition to a superfluid state.
In this work, we develop a systematic method of constructing flat-band models with and without band crossings. Our construction scheme utilizes the symmetry and spatial shape of a compact localized state (CLS) and also the singularity of the flat-band wave function obtained by a Fourier transform of the CLS (FT-CLS). In order to construct a flat-band model systematically using these ingredients, we first choose a CLS with a specific symmetry representation in a given lattice. Then, the singularity of FT-CLS indicates whether the resulting flat band exhibits a band crossing point or not. A tight-binding Hamiltonian with the flat band corresponding to the FT-CLS is obtained by introducing a set of basis molecular orbitals, which are orthogonal to the FT-CLS. Our construction scheme can be systematically applied to any lattice so that it provides a powerful theoretical framework to study exotic properties of both gapped and gapless flat bands arising from their wave function singularities.
We report angle-resolved photoemission spectroscopy and first-principles numerical calculations for the band structure evolution of the 3d heavy-fermion compound CaCu3Ru4O12. Below 200 K, we observed an emergent hybridization gap between the Cu 3d electron-like band and the Ru 4d hole-like band and the resulting flat band features near the Fermi energy centered around the Brillouin zone corner. Our results confirm the non-Kondo nature of CaCu3Ru4O12, in which the Cu 3dxy electrons are less correlated and not in the Kondo limit. Comparison between theory and experiment also suggests that other mechanism such as nonlocal interactions or spin fluctuations beyond the local dynamical mean-field theory may be needed in order to give a quantitative explanation of the peculiar properties in this material.
It is known that a system which exhibits a half filled lowest flat band and the localized one-particle Wannier states on the flat band satisfy the connectivity conditions, is always ferromagnetic. Without the connectivity conditions on the flat band, the system is non-magnetic. We show that this is not always true. The reason is connected to a peculiar behavior of the band situated just above the flat band.
The minimum of the Gutzwiller energy functional depends on the number of parameters considered in the variational state. For a three-orbital Hubbard model we find that the frequently used diagonal Ansatz is very accurate in high-symmetry situations. For lower symmetry, induced by a crystal-field splitting or the spin-orbit coupling, the discrepancies in energy between the most general and a diagonal Gutzwiller Ansatz can be quite significant. We discuss approximate schemes that may be employed in multi-band cases where a minimization of the general Gutzwiller energy functional is too demanding numerically.