Do you want to publish a course? Click here

Trust-based Multi-Robot Symbolic Motion Planning with a Human-in-the-Loop

65   0   0.0 ( 0 )
 Added by Huanfei Zheng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Symbolic motion planning for robots is the process of specifying and planning robot tasks in a discrete space, then carrying them out in a continuous space in a manner that preserves the discrete-level task specifications. Despite progress in symbolic motion planning, many challenges remain, including addressing scalability for multi-robot systems and improving solutions by incorporating human intelligence. In this paper, distributed symbolic motion planning for multi-robot systems is developed to address scalability. More specifically, compositional reasoning approaches are developed to decompose the global planning problem, and atomic propositions for observation, communication, and control are proposed to address inter-robot collision avoidance. To improve solution quality and adaptability, a dynamic, quantitative, and probabilistic human-to-robot trust model is developed to aid this decomposition. Furthermore, a trust-based real-time switching framework is proposed to switch between autonomous and manual motion planning for tradeoffs between task safety and efficiency. Deadlock- and livelock-free algorithms are designed to guarantee reachability of goals with a human-in-the-loop. A set of non-trivial multi-robot simulations with direct human input and trust evaluation are provided demonstrating the successful implementation of the trust-based multi-robot symbolic motion planning methods.



rate research

Read More

This paper presents a human-robot trust integrated task allocation and motion planning framework for multi-robot systems (MRS) in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is associated with the total trust value of human in corresponding robots. Here, the human-robot trust model is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation path with maximum encoded human-robot trust can be searched based on the current trust value of each robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask automata.
Trust is a critical issue in Human Robot Interactions as it is the core of human desire to accept and use a non human agent. Theory of Mind has been defined as the ability to understand the beliefs and intentions of others that may differ from ones own. Evidences in psychology and HRI suggest that trust and Theory of Mind are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entitys actions, beliefs and intentions. However, very few works take Theory of Mind of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the Theory of Mind abilities of a robot could affect humans trust towards the robot. To this end, participants played a Price Game with a humanoid robot that was presented having either low level Theory of Mind or high level Theory of Mind. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high level of Theory of Mind abilities were trusted more than the robots presented with low level Theory of Mind skills.
75 - Yaohui Guo , Cong Shi , 2021
To facilitate effective human-robot interaction (HRI), trust-aware HRI has been proposed, wherein the robotic agent explicitly considers the humans trust during its planning and decision making. The success of trust-aware HRI depends on the specification of a trust dynamics model and a trust-behavior model. In this study, we proposed one novel trust-behavior model, namely the reverse psychology model, and compared it against the commonly used disuse model. We examined how the two models affect the robots optimal policy and the human-robot team performance. Results indicate that the robot will deliberately manipulate the humans trust under the reverse psychology model. To correct this manipulative behavior, we proposed a trust-seeking reward function that facilitates trust establishment without significantly sacrificing the team performance.
Autonomous robots operating in large knowledgeintensive domains require planning in the discrete (task) space and the continuous (motion) space. In knowledge-intensive domains, on the one hand, robots have to reason at the highestlevel, for example the regions to navigate to or objects to be picked up and their properties; on the other hand, the feasibility of the respective navigation tasks have to be checked at the controller execution level. Moreover, employing multiple robots offer enhanced performance capabilities over a single robot performing the same task. To this end, we present an integrated multi-robot task-motion planning framework for navigation in knowledge-intensive domains. In particular, we consider a distributed multi-robot setting incorporating mutual observations between the robots. The framework is intended for motion planning under motion and sensing uncertainty, which is formally known as belief space planning. The underlying methodology and its limitations are discussed, providing suggestions for improvements and future work. We validate key aspects of our approach in simulation.
Motion planning is critical to realize the autonomous operation of mobile robots. As the complexity and stochasticity of robot application scenarios increase, the planning capability of the classical hierarchical motion planners is challenged. In recent years, with the development of intelligent computation technology, the deep reinforcement learning (DRL) based motion planning algorithm has gradually become a research hotspot due to its advantageous features such as not relying on the map prior, model-free, and unified global and local planning paradigms. In this paper, we provide a systematic review of various motion planning methods. First, we summarize the representative and cutting-edge algorithms for each submodule of the classical motion planning architecture and analyze their performance limitations. Subsequently, we concentrate on reviewing RL-based motion planning approaches, including RL optimization motion planners, map-free end-to-end methods that integrate sensing and decision-making, and multi-robot cooperative planning methods. Last but not least, we analyze the urgent challenges faced by these mainstream RL-based motion planners in detail, review some state-of-the-art works for these issues, and propose suggestions for future research.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا