Do you want to publish a course? Click here

Timed Network Games with Clocks

73   0   0.0 ( 0 )
 Added by Guy Avni
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Network games are widely used as a model for selfish resource-allocation problems. In the classical model, each player selects a path connecting her source and target vertices. The cost of traversing an edge depends on the {em load}; namely, number of players that traverse it. Thus, it abstracts the fact that different users may use a resource at different times and for different durations, which plays an important role in determining the costs of the users in reality. For example, when transmitting packets in a communication network, routing traffic in a road network, or processing a task in a production system, actual sharing and congestion of resources crucially depends on time. In cite{AGK17}, we introduced {em timed network games}, which add a time component to network games. Each vertex $v$ in the network is associated with a cost function, mapping the load on $v$ to the price that a player pays for staying in $v$ for one time unit with this load. Each edge in the network is guarded by the time intervals in which it can be traversed, which forces the players to spend time in the vertices. In this work we significantly extend the way time can be referred to in timed network games. In the model we study, the network is equipped with {em clocks}, and, as in timed automata, edges are guarded by constraints on the values of the clocks, and their traversal may involve a reset of some clocks. We argue that the stronger model captures many realistic networks. The addition of clocks breaks the techniques we developed in cite{AGK17} and we develop new techniques in order to show that positive results on classic network games carry over to the stronger timed setting.



rate research

Read More

An average-time game is played on the infinite graph of configurations of a finite timed automaton. The two players, Min and Max, construct an infinite run of the automaton by taking turns to perform a timed transition. Player Min wants to minimise the average time per transition and player Max wants to maximise it. A solution of average-time games is presented using a reduction to average-price game on a finite graph. A direct consequence is an elementary proof of determinacy for average-time games. This complements our results for reachability-time games and partially solves a problem posed by Bouyer et al., to design an algorithm for solving average-price games on priced timed automata. The paper also establishes the exact computational complexity of solving average-time games: the problem is EXPTIME-complete for timed automata with at least two clocks.
Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a timed automaton with a smaller number of clocks such that the timed language accepted by the original automaton is preserved is known to be undecidable. In this paper, we give a construction, which for any given timed automaton produces a timed bisimilar automaton with the least number of clocks. Further, we show that such an automaton with the minimum possible number of clocks can be constructed in time that is doubly exponential in the number of clocks of the original automaton.
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players, Player Min and Player Max, by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.
The window mechanism was introduced by Chatterjee et al. to reinforce mean-payoff and total-payoff objectives with time bounds in two-player turn-based games on graphs. It has since proved useful in a variety of settings, including parity objectives in games and both mean-payoff and parity objectives in Markov decision processes. We study window parity objectives in timed automata and timed games: given a bound on the window size, a path satisfies such an objective if, in all states along the path, we see a sufficiently small window in which the smallest priority is even. We show that checking that all time-divergent paths of a timed automaton satisfy such a window parity objective can be done in polynomial space, and that the corresponding timed games can be solved in exponential time. This matches the complexity class of timed parity games, while adding the ability to reason about time bounds. We also consider multi-dimensional objectives and show that the complexity class does not increase. To the best of our knowledge, this is the first study of the window mechanism in a real-time setting.
In this paper we extend a popular non-cooperative network creation game (NCG) to allow for disconnected equilibrium networks. There are n players, each is a vertex in a graph, and a strategy is a subset of players to build edges to. For each edge a player must pay a cost alpha, and the individual cost for a player represents a trade-off between edge costs and shortest path lengths to all other players. We extend the model to a penalized game (PCG), for which we reduce the penalty counted towards the individual cost for a pair of disconnected players to a finite value beta. Our analysis concentrates on existence, structure, and cost of disconnected Nash and strong equilibria. Although the PCG is not a potential game, pure Nash equilibria always and pure strong equilibria very often exist. We provide tight conditions under which disconnected Nash (strong) equilibria can evolve. Components of these equilibria must be Nash (strong) equilibria of a smaller NCG. However, in contrast to the NCG, for almost all parameter values no tree is a stable component. Finally, we present a detailed characterization of the price of anarchy that reveals cases in which the price of anarchy is Theta(n) and thus several orders of magnitude larger than in the NCG. Perhaps surprisingly, the strong price of anarchy increases to at most 4. This indicates that global communication and coordination can be extremely valuable to overcome socially inferior topologies in distributed selfish network design.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا