Do you want to publish a course? Click here

Evolutionary algorithms converge towards evolved biological photonic structures

220   0   0.0 ( 0 )
 Added by Antoine Moreau
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nature features a plethora of extraordinary photonic architectures that have been optimized through natural evolution. While numerical optimization is increasingly and successfully used in photonics, it has yet to replicate any of these complex naturally occurring structures. Using evolutionary algorithms directly inspired by natural evolution, we have retrieved emblematic natural photonic structures, indicating how such regular structures might have spontaneously emerged in nature and to which precise optical or fabrication constraints they respond. Comparisons between algorithms show that recombination between individuals inspired by sexual reproduction confers a clear advantage in this context of modular problems and suggest further ways to improve the algorithms. Such an in silico evolution can also suggest original and elegant solutions to practical problems, as illustrated by the design of counter-intuitive anti-reflective coating for solar cells.



rate research

Read More

High-resolution optical microscopy suffers from a low contrast in scattering media where a multiply scattered wave obscures a ballistic wave used for image formation. To extend the imaging depth, various gating operations - confocal, coherence, and polarization gating - have been devised to filter out the multiply scattered wave. However, these gating methods are imperfect as they all act on the detection plane located outside a scattering medium. Here, we present a new gating scheme, called space gating, that rejects the multiply scattered wave directly at the object plane inside a scattering medium. Specifically, we introduced a 30 $mu$m-wide acoustic focus to the object plane and reconstructed a coherent image only with the ballistic wave modulated by acousto-optic interaction. This method allows us to reject the multiply scattered wave that the existing gating methods cannot filter out and improves the ratio of the ballistic wave to the multiply scattered wave by more than 100 times for a scattering medium more than 20 times thicker than its scattering mean free path. Using the coherent imaging technique based on space gating, we demonstrate the unprecedented imaging capability - phase imaging of optically transparent biological cells fully embedded within a scattering medium - with a spatial resolution of 1.5 $mu$m.
We investigate the use of a Genetic Algorithm (GA) to design a set of photonic crystals (PCs) in one and two dimensions. Our flexible design methodology allows us to optimize PC structures which are optimized for specific objectives. In this paper, we report the results of several such GA-based PC optimizations. We show that the GA performs well even in very complex design spaces, and therefore has great potential for use as a robust design tool in present and future applications.
We outline a recently developed theory of impedance-matching, or reflectionless excitation of arbitrary finite photonic structures in any dimension. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible, and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex-frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real-frequency axis, where it becomes a physical steady-state solution, referred to as a Reflectionless Scattering Mode (RSM). Except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. In a structure with parity and time-reversal symmmetry or with parity-time symmetry, generically a subset of R-zeros is real, and reflectionless states exist without structural tuning. Such systems can exhibit symmetry-breaking transitions when two RSMs meet, which corresponds to a recently identified kind of exceptional point at which the shape of the reflection and transmission resonance lineshape is flattened.
In this work we describe different types of photonic structures that allow tunability of the photonic band gap upon the application of external stimuli, as the electric or magnetic field. We review and compare two porous 1D photonic crystals: in the first one a liquid crystal has been infiltrated in the pores of the nanoparticle network, while in the second one the optical response to the electric field of metallic nanoparticles has been exploited. Then, we present a 1D photonic crystal made with indium tin oxide (ITO) nanoparticles, and we propose this system for electro-optic tuning. Finally, we describe a microcavity with a defect mode that is tuned in the near infrared by the magnetic field, envisaging a contact-less magneto-optic switch. These optical switches can find applications in ICT and electrochromic windows.
The collective response of a system is profoundly shaped by the interaction dynamics between its constituent elements. In physics, tailoring these interactions can enable the observation of unusual phenomena that are otherwise inaccessible in standard settings, ranging from the possibility of a Kramers degeneracy even in the absence of spin to the breakdown of the bulkboundary correspondence. Here, we show how such tailored asymmetric coupling terms can be realized in photonic integrated platforms by exploiting non-Hermitian concepts. In this regard, we introduce a generalized photonic molecule composed of a pair of microring resonators with internal S-bends connected via two directional couplers and a link waveguide. By judiciously designing the parameters of this system, namely the length of the links and the power division ratio of the directional couplers, we experimentally show the emergence of Hermitian and non-Hermitian type exchange interactions. The ramifications of such coupling dynamics are then studied in 1D chain and ring-type active lattices. Our findings establish the proposed structure as a promising building block for the realization of a variety of phenomena, especially those associated with phase locking in laser arrays and non-Hermitian topological lattices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا