Do you want to publish a course? Click here

Duality and an exact Landau-Ginzburg potential for quasi-bosonic Chern-Simons-Matter theories

379   0   0.0 ( 0 )
 Added by Naveen Prabhakar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been conjectured that Chern-Simons (CS) gauged `regular bosons in the fundamental representation are `level-rank dual to CS gauged critical fermions also in the fundamental representation. Generic relevant deformations of these conformal field theories lead to one of two distinct massive phases. In previous work, the large $N$ thermal free energy for the bosonic theory in the unHiggsed phase has been demonstrated to match the corresponding fermionic results under duality. In this note we evaluate the large $N$ thermal free energy of the bosonic theory in the Higgsed phase and demonstrate that our results, again, perfectly match the predictions of duality. Our computation is performed in a unitary gauge by integrating out the physical excitations of the theory - i.e. W bosons - at all orders in the t Hooft coupling. Our results allow us to construct an exact quantum effective potential for ${bar phi} phi$, the lightest gauge invariant scalar operator in the theory. In the zero temperature limit this exact Landau-Ginzburg potential is non-analytic at ${bar phi phi}=0$. The extrema of this effective potential at positive ${bar phi}phi$ solve the gap equations in the Higgsed phase while the extrema at negative ${bar phi} phi$ solve the gap equations in the unHiggsed phase. Our effective potential is bounded from below only for a certain range of $x_6$ (the parameter that governs sextic interactions of $phi$). This observation suggests that the regular boson theory has a stable vacuum only when $x_6$ lies in this range.



rate research

Read More

We generalize previously obtained results for the (all orders in the t Hooft coupling) thermal free energy of bosonic and fermionic large $N$ Chern-Simons theories with fundamental matter, to values of the chemical potential larger than quasiparticle thermal masses. Building on an analysis by Geracie, Goykhman and Son, we present a simple explicit formula for the occupation number for a quasiparticle state of any given energy and charge as a function of the temperature and chemical potential. This formula is a generalization to finite t Hooft coupling of the famous occupation number formula of Bose-Einstein statistics, and implies an exclusion principle for Chern-Simons coupled bosons: the total number of bosons occupying any particular state cannot exceed the Chern-Simons level. Specializing our results to zero temperature we construct the phase diagrams of these theories as a function of chemical potential and the UV parameters. At large enough chemical potential, all the bosonic theories we study transit into a compressible Bose condensed phase in which the runaway instability of free Bose condensates is stabilized by the bosonic exclusion principle. This novel Bose condensate is dual to - and reproduces the thermodynamics of - the fermionic Fermi sea.
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results to propose the mapping of Wilson loops under Seiberg-like dualities and verify that the proposed map agrees with the exact results for expectation values of circular Wilson loops. In some cases we also relate the algebra of Wilson loops to the equivariant quantum K-ring of certain quasi projective varieties. This generalizes the connection between the Verlinde algebra and the quantum cohomology of the Grassmannian found by Witten.
It has been conjectured that 3d fermions minimally coupled to Chern-Simons gauge fields are dual to 3d critical scalars, also minimally coupled to Chern-Simons gauge fields. The large $N$ arguments for this duality can formally be used to show that Chern-Simons-gauged {it critical} (Gross-Neveu) fermions are also dual to gauged `{it regular} scalars at every order in a $1/N$ expansion, provided both theories are well-defined (when one fine-tunes the two relevant parameters of each of these theories to zero). In the strict large $N$ limit these `quasi-bosonic theories appear as fixed lines parameterized by $x_6$, the coefficient of a sextic term in the potential. While $x_6$ is an exactly marginal deformation at leading order in large $N$, it develops a non-trivial $beta$ function at first subleading order in $1/N$. We demonstrate that the beta function is a cubic polynomial in $x_6$ at this order in $1/N$, and compute the coefficients of the cubic and quadratic terms as a function of the t Hooft coupling. We conjecture that flows governed by this leading large $N$ beta function have three fixed points for $x_6$ at every non-zero value of the t Hooft coupling, implying the existence of three distinct regular bosonic and three distinct dual critical fermionic conformal fixed points, at every value of the t Hooft coupling. We analyze the phase structure of these fixed point theories at zero temperature. We also construct dual pairs of large $N$ fine-tuned renormalization group flows from supersymmetric ${cal N}=2$ Chern-Simons-matter theories, such that one of the flows ends up in the IR at a regular boson theory while its dual partner flows to a critical fermion theory. This construction suggests that the duality between these theories persists at finite $N$, at least when $N$ is large.
We study a certain class of supersymmetric (SUSY) observables in 3d $mathcal{N}=2$ SUSY Chern-Simons (CS) matter theories and investigate how their exact results are related to the perturbative series with respect to coupling constants given by inverse CS levels. We show that the observables have nontrivial resurgent structures by expressing the exact results as a full transseries consisting of perturbative and non-perturbative parts. As real mass parameters are varied, we encounter Stokes phenomena at an infinite number of points, where the perturbative series becomes non-Borel-summable due to singularities on the positive real axis of the Borel plane. We also investigate the Stokes phenomena when the phase of the coupling constant is varied. For these cases, we find that the Borel ambiguities in the perturbative sector are canceled by those in nonperturbative sectors and end up with an unambiguous result which agrees with the exact result even on the Stokes lines. We also decompose the Coulomb branch localization formula, which is an integral representation for the exact results, into Lefschetz thimble contributions and study how they are related to the resurgent transseries. We interpret the non-perturbative effects appearing in the transseries as contributions of complexified SUSY solutions which formally satisfy the SUSY conditions but are not on the original path integral contour.
74 - Masazumi Honda 2016
Continuing the work arXiv:1603.06207, we study perturbative series in general 3d $mathcal{N}=2$ supersymmetric Chern-Simons matter theory with $U(1)_R$ symmetry, which is given by a power series expansion of inverse Chern-Simons levels. We find that the perturbative series are usually non-Borel summable along positive real axis for various observables. Alternatively we prove that the perturbative series are always Borel summable along negative (positive) imaginary axis for positive (negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same as exact results and therefore correct ways of resumming the perturbative series.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا