No Arabic abstract
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu$_2$Si$_2$, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu$_2$Si$_2$. In YbRh$_2$Si$_2$, superconductivity appears to be suppressed at $Tgtrsim~10$ mK by AF order ($T_N$ = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at $T_A$ slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at $T_c$ = 2 mK. Like the pressure - induced QCP in CeRhIn$_5$, the magnetic field - induced one in YbRh$_2$Si$_2$ is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-$T$ unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher $T_c$s, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.
The crystal-field ground state wave function of CeCu$_2$Si$_2$ has been investigated with linear polarized $M$-edge x-ray absorption spectroscopy from 250mK to 250K, thus covering the superconducting ($T_{text{c}}$=0.6K), the Kondo ($T_{text{K}}$$approx$20K) as well as the Curie-Weiss regime. The comparison with full-multiplet calculations shows that the temperature dependence of the experimental linear dichroism is well explained with a $Gamma_7^{(1)}$ crystal-field ground-state and the thermal population of excited states at around 30meV. The crystal-field scheme does not change throughout the entire temperature range thus making the scenario of orbital switching unlikely. Spectroscopic evidence for the presence of the Ce 4$f^0$ configuration in the ground state is consistent with the possibility for a multi-orbital character of the ground state. We estimate from the Kondo temperature and crystal-field splitting energies that several percents of the higher lying $Gamma_6$ state and $Gamma_7^{(2)}$ crystal-field states are mixed into the primarily $Gamma_7^{(1)}$ ground state. This estimate is also supported by re-normalized band-structure calculations that uses the experimentally determined crystal-field scheme.
We report a comprehensive investigation of the lattice dynamics of URu$_2$Si$_2$ as a function of temperature using Raman scattering, optical conductivity and inelastic neutron scattering measurements as well as theoretical {it ab initio} calculations. The main effects on the optical phonon modes are related to Kondo physics. The B$_{1g}$ ($Gamma_3$ symmetry) phonon mode slightly softens below $sim$100~K, in connection with the previously reported softening of the elastic constant, $C_{11}-C_{12}$, of the same symmetry, both observations suggesting a B$_{1g}$ symmetry-breaking instability in the Kondo regime. Through optical conductivity, we detect clear signatures of strong electron-phonon coupling, with temperature dependent spectral weight and Fano line shape of some phonon modes. Surprisingly, the line shapes of two phonon modes, E$_u$(1) and A$_{2u}$(2), show opposite temperature dependencies. The A$_{2u}$(2) mode loses its Fano shape below 150 K, whereas the E$_u$(1) mode acquires it below 100~K, in the Kondo cross-over regime. This may point out to momentum-dependent Kondo physics. By inelastic neutron scattering measurements, we have drawn the full dispersion of the phonon modes between 300~K and 2~K. No remarkable temperature dependence has been obtained including through the hidden order transition. {it Ab initio} calculations with the spin-orbit coupling are in good agreement with the data except for a few low energy branches with propagation in the (a,b) plane.
Motivated by recent experiments on heavy fermion materials CeCu$_2$Si$_2$ and UBe$_{13}$, we develop a framework to capture generic properties of multiband superconductors with strong Pauli paramagnetic effect (PPE). In contrast to the single band case, the upper critical field $H_{rm c2}$ can remain second order transition even for strong PPE cases. The expected first order transition is hidden inside $H_{rm c2}$ and becomes a crossover due to the interplay of multibandness. The present theory based on full self-consistent solutions of the microscopic Eilenberger theory explains several mysterious anomalies associated with the crossover and the empty vortex core state which is observed by recent STM experiment on CeCu$_2$Si$_2$.
In a recent Letter [J. K. Dong et al., Phys. Rev. Lett. 104, 087005 (2010)], Dong textit{et al}. have observed a $T^{1.5}$ dependence of resistivity $rho$ in KFe$_2$As$_2$ at the upper critical field $B_{c2}$ = 5 T parallel to the c axis and have suggested the existence of a field-induced quantum critical point (QCP) at $B_{c2}$. In this comment, we argue that observation of a $T^{1.5}$ dependence of $rho$ in a sample showing broad resistive transitions does not constitute evidence for a QCP and that recent dHvA results do not support the proposed QCP.
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the development of antiferromagnetic (AFM) fluctuations down to 1~K indicated that the AFM criticality was close, Korringa behavior was observed below 0.8~K, and no magnetic anomaly was observed above $T_{rm c} sim$ 0.6 K. These behaviors were expected in $S$-type CeCu$_2$Si$_2$. The temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ at zero field was almost identical to that in the previous polycrystalline samples down to 130~mK, but the temperature dependence deviated downward below 120~mK. In fact, $1/T_1$ in the SC state could be fitted with the two-gap $s_{pm}$-wave rather than the two-gap $s_{++}$-wave model down to 90~mK. Under magnetic fields, the spin susceptibility in both directions clearly decreased below $T_{rm c}$, indicative of the formation of spin singlet pairing. The residual part of the spin susceptibility was understood by the field-induced residual density of states evaluated from $1/T_1T$, which was ascribed to the effect of the vortex cores. No magnetic anomaly was observed above the upper critical field $H_{c2}$, but the development of AFM fluctuations was observed, indicating that superconductivity was realized in strong AFM fluctuations.