Do you want to publish a course? Click here

Exploring the framework of assemblage moment matrices and its applications in device-independent characterizations

181   0   0.0 ( 0 )
 Added by Shin-Liang Chen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a recent work [Phys. Rev. Lett. 116, 240401 (2016)], a framework known by the name of assemblage moment matrices (AMMs) has been introduced for the device-independent quantification of quantum steerability and measurement incompatibility. In other words, even with no assumption made on the preparation device nor the measurement devices, one can make use of this framework to certify, directly from the observed data, the aforementioned quantum features. Here, we further explore the framework of AMM and provide improved device-independent bounds on the generalized robustness of entanglement, the incompatibility robustness and the incompatibility weight. We compare the tightness of our device-independent bounds against those obtained from other approaches. Along the way, we also provide an analytic form for the generalized robustness of entanglement for an arbitrary two-qudit isotropic state. When considering a Bell-type experiment in a tri- or more-partite scenario, we further show that the framework of AMM provides a natural way to characterize a superset to the set of quantum correlations, namely, one which also allows post-quantum steering.



rate research

Read More

Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal quantum violation of the Clauser-Horne-Shimony-Holt inequality certifies that the underlying state contains the two-qubit maximally entangled state and the measurements of one party (say, Alice) contains a pair of anti-commuting qubit observables. As a consequence, the other party (say, Bob) automatically verifies his set of states remotely steered by Alice, namely the assemblage, is in the eigenstates of a pair of anti-commuting observables. It is natural to ask if the quantum violation of the Bell inequality is not maximally achieved, are we capable of estimating how close the underlying assemblage is to the reference one? In this work, we provide a systematic device-independent estimation by proposing a framework called robust self-testing of steerable quantum assemblages. In particular, we consider assemblages violating several paradigmatic Bell inequalities and obtain the robust self-testing statement for each scenario. Our result is device-independent (DI), i.e., no assumption is made on the shared state and the measurement devices involved. Our work thus not only paves a way for exploring the connection between the boundary of quantum set of correlations and steerable assemblages, but also provides a useful tool in the areas of DI quantum certification. As two explicit applications, we show 1) that it can be used for an alternative proof of the protocol of DI certification of all entangled states proposed by Bowles et al. [Phys. Rev. Lett. 121, 180503 (2018)], and 2) that it can be used to verify all non-entanglement-breaking channels with fewer assumptions compared with the work of Rosset et al. [Phys. Rev. X 8, 021033 (2018)].
Techniques developed for device-independent characterizations allow one to certify certain physical properties of quantum systems without assuming any knowledge of their internal workings. Such a certification, however, often relies on the employment of device-independent witnesses catered for the particular property of interest. In this work, we consider a one-parameter family of multipartite, two-setting, two-outcome Bell inequalities and demonstrate the extent to which they are suited for the device-independent certification of genuine many-body entanglement (and hence the entanglement depth) present in certain well-known multipartite quantum states, including the generalized Greenberger-Horne-Zeilinger (GHZ) states with unbalanced weights, the higher-dimensional generalizations of balanced GHZ states, and the $W$ states. As a by-product of our investigations, we have found that, in contrast with well-established results, provided trivial qubit measurements are allowed, full-correlation Bell inequalities can also be used to demonstrate the nonlocality of weakly entangled unbalanced-weight GHZ states. Besides, we also demonstrate how two-setting, two-outcome Bell inequalities can be constructed, based on the so-called GHZ paradox, to witness the entanglement depth of various graph states, including the ring graph states, the fully connected graph states, and some linear graph states, etc.
The semi-device-independent approach provides a framework for prepare-and-measure quantum protocols using devices whose behavior must not be characterized nor trusted, except for a single assumption on the dimension of the Hilbert space characterizing the quantum carriers. Here, we propose instead to constrain the quantum carriers through a bound on the mean value of a well-chosen observable. This modified assumption is physically better motivated than a dimension bound and closer to the description of actual experiments. In particular, we consider quantum optical schemes where the source emits quantum states described in an infinite-dimensional Fock space and model our assumption as an upper bound on the average photon number in the emitted states. We characterize the set of correlations that may be exhibited in the simplest possible scenario compatible with our new framework, based on two energy-constrained state preparations and a two-outcome measurement. Interestingly, we uncover the existence of quantum correlations exceeding the set of classical correlations that can be produced by devices behaving in a purely pre-determined fashion (possibly including shared randomness). This feature suggests immediate applications to certified randomness generation. Along this line, we analyze the achievable correlations in several prepare-and-measure optical schemes with a mean photon number constraint and demonstrate that they allow for the generation of certified randomness. Our simplest optical scheme works by the on-off keying of an attenuated laser source followed by photocounting. It opens the path to more sophisticated energy-constrained semi-device-independent quantum cryptography protocols, such as quantum key distribution.
The tensor decomposition addressed in this paper may be seen as a generalisation of Singular Value Decomposition of matrices. We consider general multilinear and multihomogeneous tensors. We show how to reduce the problem to a truncated moment matrix problem and give a new criterion for flat extension of Quasi-Hankel matrices. We connect this criterion to the commutation characterisation of border bases. A new algorithm is described. It applies for general multihomogeneous tensors, extending the approach of J.J. Sylvester to binary forms. An example illustrates the algebraic operations involved in this approach and how the decomposition can be recovered from eigenvector computation.
We show that the entropy of a message can be tested in a device-independent way. Specifically, we consider a prepare-and-measure scenario with classical or quantum communication, and develop two different methods for placing lower bounds on the communication entropy, given observable data. The first method is based on the framework of causal inference networks. The second technique, based on convex optimization, shows that quantum communication provides an advantage over classical, in the sense of requiring a lower entropy to reproduce given data. These ideas may serve as a basis for novel applications in device-independent quantum information processing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا