No Arabic abstract
Random graph models are important constructs for data analytic applications as well as pure mathematical developments, as they provide capabilities for network synthesis and principled analysis. Several models have been developed with the aim of faithfully preserving important graph metrics and substructures. With the goal of capturing degree distribution, clustering coefficient, and communities in a single random graph model, we propose a new model to address shortcomings in a progression of network modeling capabilities. The Block Two-Level Erd{H{o}}s-R{e}nyi (BTER) model of Seshadhri et al., designed to allow prescription of expected degree and clustering coefficient distributions, neglects community modeling, while the Generalized BTER (GBTER) model of Bridges et al., designed to add community modeling capabilities to BTER, struggles to faithfully represent all three characteristics simultaneously. In this work, we fit BTER and two GBTER configurations to several real-world networks and compare the results with that of our new model, the Extended GBTER (EGBTER) model. Our results support that EBGTER adds a community-modeling flexibility to BTER, while retaining a satisfactory level of accuracy in terms of degree and clustering coefficient. Our insights and empirical testing of previous models as well as the new model are novel contributions to the literature.
Graph clustering is an important technique to understand the relationships between the vertices in a big graph. In this paper, we propose a novel random-walk-based graph clustering method. The proposed method restricts the reach of the walking agent using an inflation function and a normalization function. We analyze the behavior of the limited random walk procedure and propose a novel algorithm for both global and local graph clustering problems. Previous random-walk-based algorithms depend on the chosen fitness function to find the clusters around a seed vertex. The proposed algorithm tackles the problem in an entirely different manner. We use the limited random walk procedure to find attracting vertices in a graph and use them as features to cluster the vertices. According to the experimental results on the simulated graph data and the real-world big graph data, the proposed method is superior to the state-of-the-art methods in solving graph clustering problems. Since the proposed method uses the embarrassingly parallel paradigm, it can be efficiently implemented and embedded in any parallel computing environment such as a MapReduce framework. Given enough computing resources, we are capable of clustering graphs with millions of vertices and hundreds millions of edges in a reasonable time.
We apply spectral clustering and multislice modularity optimization to a Los Angeles Police Department field interview card data set. To detect communities (i.e., cohesive groups of vertices), we use both geographic and social information about stops involving street gang members in the LAPD district of Hollenbeck. We then compare the algorithmically detected communities with known gang identifications and argue that discrepancies are due to sparsity of social connections in the data as well as complex underlying sociological factors that blur distinctions between communities.
We study the structure of loops in networks using the notion of modulus of loop families. We introduce a new measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link-usage optimally. We propose weighting networks using these expected link-usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.
Network science is a powerful tool for analyzing complex systems in fields ranging from sociology to engineering to biology. This paper is focused on generative models of large-scale bipartite graphs, also known as two-way graphs or two-mode networks. We propose two generative models that can be easily tuned to reproduce the characteristics of real-world networks, not just qualitatively, but quantitatively. The characteristics we consider are the degree distributions and the metamorphosis coefficient. The metamorphosis coefficient, a bipartite analogue of the clustering coefficient, is the proportion of length-three paths that participate in length-four cycles. Having a high metamorphosis coefficient is a necessary condition for close-knit community structure. We define edge, node, and degreewise metamorphosis coefficients, enabling a more detailed understanding of the bipartite connectivity that is not explained by degree distribution alone. Our first model, bipartite Chung-Lu (CL), is able to reproduce real-world degree distributions, and our second model, bipartite block two-level Erdos-Renyi (BTER), reproduces both the degree distributions as well as the degreewise metamorphosis coefficients. We demonstrate the effectiveness of these models on several real-world data sets.
We introduce a new conception of community structure, which we refer to as hidden community structure. Hidden community structure refers to a specific type of overlapping community structure, in which the detection of weak, but meaningful, communities is hindered by the presence of stronger communities. We present Hidden Community Detection HICODE, an algorithm template that identifies both the strong, dominant community structure as well as the weaker, hidden community structure in networks. HICODE begins by first applying an existing community detection algorithm to a network, and then removing the structure of the detected communities from the network. In this way, the structure of the weaker communities becomes visible. Through application of HICODE, we demonstrate that a wide variety of real networks from different domains contain many communities that, though meaningful, are not detected by any of the popular community detection algorithms that we consider. Additionally, on both real and synthetic networks containing a hidden ground-truth community structure, HICODE uncovers this structure better than any baseline algorithms that we compared against. For example, on a real network of undergraduate students that can be partitioned either by `Dorm (residence hall) or `Year, we see that HICODE uncovers the weaker `Year communities with a JCRecall score (a recall-based metric that we define in the text) of over 0.7, while the baseline algorithms achieve scores below 0.2.