No Arabic abstract
Global MCAO aims to exploit a very wide technical field of view to find AO-suitable NGSs, with the goal to increase the overall sky coverage. The concept foresees the use of numerical entities, called Virtual Deformable Mirrors, to deal with the nominally thin depth of focus reduction, due to the field of view size. These objects act together as a best fit of the atmospheric layers behavior, in a limited number of conjugation altitudes, so to become the starting point for a further optimization of the real deformable mirrors shapes for the correction of the -smaller- scientific field. We developed a simulator, which numerically combines, in a Layer-Oriented fashion, the measurements of a given number of wavefront sensors, each dedicated to one reference star, to optimize the performance in the NGSs directions. Here we describe some details of the numerical code employed in the simulator, along with the philosophy behind some of the algorithms involved, listing the main goals and assumptions. Several details, including, for instance, how the number and conjugation heights of the VDMs are chosen in the simulation code, are briefly given. Furthermore, we also discuss the possible approaches to define a merit function to optimize the best solution. Finally, after an overview of the remaining issues and limitations of the method, numerical results obtained studying the influence of Cn2 profiles on the reconstruction quality and the delivered SR in a number of fields in the sky are given.
The Global-Multi Conjugated Adaptive Optics (GMCAO) approach offers an alternative way to correct an adequate scientific Field of View (FoV) using only natural guide stars (NGSs) to extremely large ground-based telescopes. Thus, even in the absence of laser guide stars, a GMCAO-equipped ELT-like telescope can achieve optimal performance in terms of Strehl Ratio (SR), retrieving impressive results in studying star-poor fields, as in the cases of the deep field observations. The benefits and usability of GMCAO have been demonstrated by studying 6000 mock high redshift galaxies in the Chandra Deep Field South region. However, a systematic study simulating observations in several portions of the sky is mandatory to have a robust statistic of the GMCAO performance. Technical, tomographic and astrophysical parameters, discussed here, are given as inputs to GIUSTO, an IDL-based code that estimates the SR over the considered field, and the results are analyzed with statistical considerations. The best performance is obtained using stars that are relatively close to the Scientific FoV; therefore, the SR correlates with the mean off-axis position of NGSs, as expected, while their magnitude plays a secondary role. This study concludes that the SRs correlate linearly with the galactic latitude, as also expected. Because of the lack of natural guide stars needed for low-order aberration sensing, the GMCAO confirms as a promising technique to observe regions that can not be studied without the use of laser beacons. It represents a robust alternative way or a risk mitigation strategy for laser approaches on the ELTs.
Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tools numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from PIC or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field `primitives is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using $sim 10^8$ particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of $sim10 $ mm$^3$. Insights derived from this application show that the tool can support understanding of HED plasmas.
The Multiconjugate Adaptive Optics RelaY (MAORY) is and Adaptive Optics module to be mounted on the ESO European-Extremely Large Telescope (E-ELT). It is a hybrid Natural and Laser Guide System that will perform the correction of the atmospheric turbulence volume above the telescope feeding the Multi-AO Imaging Camera for Deep Observations Near Infrared spectro-imager (MICADO). We developed an end-to-end Monte- Carlo adaptive optics simulation tool to investigate the performance of a the MAORY and the calibration, acquisition, operation strategies. MAORY will implement Multiconjugate Adaptive Optics combining Laser Guide Stars (LGS) and Natural Guide Stars (NGS) measurements. The simulation tool implements the various aspect of the MAORY in an end to end fashion. The code has been developed using IDL and uses libraries in C++ and CUDA for efficiency improvements. Here we recall the code architecture, we describe the modeled instrument components and the control strategies implemented in the code.
X-ray Charge Coupled Devices (CCDs) have been the workhorse for soft X-ray astronomical instruments for the past quarter century. They provide broad energy response, extremely low electronic read noise, and good energy resolution in soft X-rays. These properties, along with the large arrays and small pixel sizes available with modern-day CCDs, make them a potential candidate for next generation astronomical X-ray missions equipped with large collecting areas, high angular resolutions and wide fields of view, enabling observation of the faint, diffuse and high redshift X-ray universe. However, such high collecting area (about 30 times Chandra) requires these detectors to have an order of magnitude faster readout than current CCDs to avoid saturation and pile up effects. In this context, Stanford University and MIT have initiated the development of fast readout X-ray cameras. As a tool for this development, we have designed a fast readout, low noise electronics board (intended to work at a 5 Megapixel per second data rate) coupled with an STA Archon controller to readout a 512 x 512 CCD (from MIT Lincoln Laboratory). This versatile setup allows us to study a number of parameters and operation conditions including the option for digital shaping. In this paper, we describe the characterization test stand, the concept and development of the readout electronics, and simulation results. We also report the first measurements of read noise, energy resolution and other parameters from this set up. While this is very much a prototype, we plan to use larger, multi-node CCD devices in the future with dedicated ASIC readout systems to enable faster, parallel readout of the CCDs.
FORCE is a Japan-US space-based astronomy mission for an X-ray imaging spectroscopy in an energy range of 1--80 keV. The Wideband Hybrid X-ray Imager (WHXI), which is the main focal plane detector, will use a hybrid semiconductor imager stack composed of silicon and cadmium telluride (CdTe). The silicon imager will be a certain type of the silicon-on-insulator (SOI) pixel sensor, named the X-ray pixel (XRPIX) series. Since the sensor has a small pixel size (30--36 $mu$m) and a thick sensitive region (300--500 $mu$m), understanding the detector response is not trivial and is important in order to optimize the camera design and to evaluate the scientific capabilities. We have developed a framework to simulate observations of celestial sources with semiconductor sensors. Our simulation framework was tested and validated by comparing our simulation results to laboratory measurements using the XRPIX 6H sensor. The simulator well reproduced the measurement results with reasonable physical parameters of the sensor including an electric field structure, a Coulomb repulsion effect on the carrier diffusion, and arrangement of the degraded regions. This framework is also applicable to future XRPIX updates including the one which will be part of the WHXI, as well as various types of semiconductor sensors.