No Arabic abstract
Omnidirectional video enables spherical stimuli with the $360 times 180^ circ$ viewing range. Meanwhile, only the viewport region of omnidirectional video can be seen by the observer through head movement (HM), and an even smaller region within the viewport can be clearly perceived through eye movement (EM). Thus, the subjective quality of omnidirectional video may be correlated with HM and EM of human behavior. To fill in the gap between subjective quality and human behavior, this paper proposes a large-scale visual quality assessment (VQA) dataset of omnidirectional video, called VQA-OV, which collects 60 reference sequences and 540 impaired sequences. Our VQA-OV dataset provides not only the subjective quality scores of sequences but also the HM and EM data of subjects. By mining our dataset, we find that the subjective quality of omnidirectional video is indeed related to HM and EM. Hence, we develop a deep learning model, which embeds HM and EM, for objective VQA on omnidirectional video. Experimental results show that our model significantly improves the state-of-the-art performance of VQA on omnidirectional video.
It is challenging to directly estimate the geometry of human from a single image due to the high diversity and complexity of body shapes with the various clothing styles. Most of model-based approaches are limited to predict the shape and pose of a minimally clothed body with over-smoothing surface. Although capturing the fine detailed geometries, the model-free methods are lack of the fixed mesh topology. To address these issues, we propose a novel topology-preserved human reconstruction approach by bridging the gap between model-based and model-free human reconstruction. We present an end-to-end neural network that simultaneously predicts the pixel-aligned implicit surface and the explicit mesh model built by graph convolutional neural network. Moreover, an extra graph convolutional neural network is employed to estimate the vertex offsets between the implicit surface and parametric mesh model. Finally, we suggest an efficient implicit registration method to refine the neural network output in implicit space. Experiments on DeepHuman dataset showed that our approach is effective.
Vision-based sign language recognition aims at helping deaf people to communicate with others. However, most existing sign language datasets are limited to a small number of words. Due to the limited vocabulary size, models learned from those datasets cannot be applied in practice. In this paper, we introduce a new large-scale Word-Level American Sign Language (WLASL) video dataset, containing more than 2000 words performed by over 100 signers. This dataset will be made publicly available to the research community. To our knowledge, it is by far the largest public ASL dataset to facilitate word-level sign recognition research. Based on this new large-scale dataset, we are able to experiment with several deep learning methods for word-level sign recognition and evaluate their performances in large scale scenarios. Specifically we implement and compare two different models,i.e., (i) holistic visual appearance-based approach, and (ii) 2D human pose based approach. Both models are valuable baselines that will benefit the community for method benchmarking. Moreover, we also propose a novel pose-based temporal graph convolution networks (Pose-TGCN) that models spatial and temporal dependencies in human pose trajectories simultaneously, which has further boosted the performance of the pose-based method. Our results show that pose-based and appearance-based models achieve comparable performances up to 66% at top-10 accuracy on 2,000 words/glosses, demonstrating the validity and challenges of our dataset. Our dataset and baseline deep models are available at url{https://dxli94.github.io/WLASL/}.
Nowadays, billions of videos are online ready to be viewed and shared. Among an enormous volume of videos, some popular ones are widely viewed by online users while the majority attract little attention. Furthermore, within each video, different segments may attract significantly different numbers of views. This phenomenon leads to a challenging yet important problem, namely fine-grained video attractiveness prediction. However, one major obstacle for such a challenging problem is that no suitable benchmark dataset currently exists. To this end, we construct the first fine-grained video attractiveness dataset, which is collected from one of the most popular video websites in the world. In total, the constructed FVAD consists of 1,019 drama episodes with 780.6 hours covering different categories and a wide variety of video contents. Apart from the large amount of videos, hundreds of millions of user behaviors during watching videos are also included, such as view counts, fast-forward, fast-rewind, and so on, where view counts reflects the video attractiveness while other engagements capture the interactions between the viewers and videos. First, we demonstrate that video attractiveness and different engagements present different relationships. Second, FVAD provides us an opportunity to study the fine-grained video attractiveness prediction problem. We design different sequential models to perform video attractiveness prediction by relying solely on video contents. The sequential models exploit the multimodal relationships between visual and audio components of the video contents at different levels. Experimental results demonstrate the effectiveness of our proposed sequential models with different visual and audio representations, the necessity of incorporating the two modalities, and the complementary behaviors of the sequential prediction models at different levels.
There are substantial instructional videos on the Internet, which enables us to acquire knowledge for completing various tasks. However, most existing datasets for instructional video analysis have the limitations in diversity and scale,which makes them far from many real-world applications where more diverse activities occur. Moreover, it still remains a great challenge to organize and harness such data. To address these problems, we introduce a large-scale dataset called COIN for COmprehensive INstructional video analysis. Organized with a hierarchical structure, the COIN dataset contains 11,827 videos of 180 tasks in 12 domains (e.g., vehicles, gadgets, etc.) related to our daily life. With a new developed toolbox, all the videos are annotated effectively with a series of step descriptions and the corresponding temporal boundaries. Furthermore, we propose a simple yet effective method to capture the dependencies among different steps, which can be easily plugged into conventional proposal-based action detection methods for localizing important steps in instructional videos. In order to provide a benchmark for instructional video analysis, we evaluate plenty of approaches on the COIN dataset under different evaluation criteria. We expect the introduction of the COIN dataset will promote the future in-depth research on instructional video analysis for the community.
We present PANDA, the first gigaPixel-level humAN-centric viDeo dAtaset, for large-scale, long-term, and multi-object visual analysis. The videos in PANDA were captured by a gigapixel camera and cover real-world scenes with both wide field-of-view (~1 square kilometer area) and high-resolution details (~gigapixel-level/frame). The scenes may contain 4k head counts with over 100x scale variation. PANDA provides enriched and hierarchical ground-truth annotations, including 15,974.6k bounding boxes, 111.8k fine-grained attribute labels, 12.7k trajectories, 2.2k groups and 2.9k interactions. We benchmark the human detection and tracking tasks. Due to the vast variance of pedestrian pose, scale, occlusion and trajectory, existing approaches are challenged by both accuracy and efficiency. Given the uniqueness of PANDA with both wide FoV and high resolution, a new task of interaction-aware group detection is introduced. We design a global-to-local zoom-in framework, where global trajectories and local interactions are simultaneously encoded, yielding promising results. We believe PANDA will contribute to the community of artificial intelligence and praxeology by understanding human behaviors and interactions in large-scale real-world scenes. PANDA Website: http://www.panda-dataset.com.