No Arabic abstract
We investigate the electronic and magnetic structures of two-dimensional transition metal tri-chalcogenide CrSiTe$_{3}$ and CrGeTe$_{3}$ materials by carrying out first-principles calculations. The single-layer CrSiTe$_3$ and CrGeTe$_3$ are found to be a ferromagnetic insulator, where the presence of the strong $dpsigma$-hybridization of Cr $e_{mathrm{g}}$-Te $p$ plays a crucial role for the ferromagnetic coupling between Cr ions. We observe that the bandgaps and the interlayer magnetic order vary notably depending on the magnitude of on-site Coulomb interaction $U$ for Cr $d$ electrons. The bandgaps are formed between the Cr $e_{mathrm{g}}$ conduction bands and the Te $p$ valence bands for both CrSiTe$_3$ and CrGeTe$_3$ in the majority-spin channel. The dominant Te $p$ antibonding character in the valence bands just below the Fermi level is related to the decrease of the bandgap for the increase of $U$. We elucidate the energy band diagram, which may serve to understand the electronic and magnetic properties of the $ABX_3$-type transition metal tri-chalcogenides in general.
We report the importance of anisotropic Coulomb interactions in DFT+U calculations of the electronic and magnetic properties of Mn$_3$O$_4$. The effects of anisotropic interactions in Mn$^{2+}$ and Mn$^{3+}$ are separately examined by defining two different sets of Hubbard parameters: $U^{2+}$ and $J^{2+}$ for Mn$^{2+}$ and $U^{3+}$ and $J^{3+}$ for Mn$^{3+}$. The anisotropic interactions in Mn$^{3+}$ have a significant impact on the physical properties of Mn$_3$O$_4$ including local magnetic moments, canted angle, spontaneous magnetic moment, and superexchange coupling, but those in Mn$^{2+}$ do not make any noticeable difference. Weak ferromagnetic interchain superexchange, observed in experiments, is predicted only if a sizable anisotropic interaction is considered in Mn$^{3+}$. By analyzing the eigenoccupations of the on-site Mn density matrix, we found that the spin channel involving Mn$^{3+}$ $d_{x^2-y^2}$ orbitals, which governs the 90$^circ$ correlation superexchange, is directly controlled by the anisotropic interactions. These findings demostrate that the exchange correction $J$ for the intraorbital Coulomb potential is of critical importance for first-principles description of reduced Mn oxides containing Mn$^{3+}$ or Mn$^{4+}$.
The bosonic analogues of topological insulators have been proposed in numerous theoretical works, but their experimental realization is still very rare, especially for spin systems. Recently, two-dimensional (2D) honeycomb van der Waals (vdW) ferromagnets have emerged as a new platform for topological spin excitations. Here, via a comprehensive inelastic neutron scattering study and theoretical analysis of the spin-wave excitations, we report the realization of topological magnon insulators in CrXTe$_3$ (X=Si, Ge) compounds. The nontrivial nature and intrinsic tunability of the gap opening at the magnon band-crossing Dirac points are confirmed, while the emergence of the corresponding in-gap topological edge states is demonstrated theoretically. The realization of topological magnon insulators with intrinsic gap-tunability in this class of remarkable 2D materials will undoubtedly lead to new and fascinating technological applications in the domain of magnonics and topological spintronics.
Using density functional theory (DFT) methods, we have calculated X-ray absorption spectroscopy (XAS) and X-ray circular dichroism (XMCD) spectra in bulk and thin films of Fe$_3$GeTe$_2$, CrI$_3$, and CrGeTe$_3$. DFT+$U$ methods are employed for better handling of correlation effects of 3$d$ electrons of transition metals. We discuss relations between the density of states, radial matrix elements, and the corresponding spectra. By comparing the calculated spectra with previously measured spectra, we discuss the reliability of DFT+$U$ methods to describe the electronic structures of these materials and determine the corresponding optimal $U$ and $J$ parameters.
Despite similar chemical compositions, LiOsO$_3$ and NaOsO$_3$ exhibit remarkably distinct structural, electronic, magnetic, and spectroscopic properties. At low temperature, LiOsO$_3$ is a polar bad metal with a rhombohedral $R3c$ structure without the presence of long-range magnetic order, whereas NaOsO$_3$ is a $G$-type antiferromagnetic insulator with an orthorhombic $Pnma$ structure. By means of comparative first-principles DFT+$U$ calculations with the inclusion of the spin-orbit coupling, we ($i$) identify the origin of the different structural ($R3c$ vs. $Pnma$) properties using a symmetry-adapted soft mode analysis, ($ii$) provide evidence that all considered exchange-correlation functionals (LDA, PBE, PBEsol, SCAN, and HSE06) and the spin disordered polymorphous descriptions are unsatisfactory to accurately describe the electronic and magnetic properties of both systems simultaneously, and ($iii$) clarify that the distinct electronic (metallic vs. insulating) properties originates mainly from a cooperative steric and magnetic effect. Finally, we find that although at ambient pressure LiOsO$_3$ with a $Pnma$ symmetry and NaOsO$_3$ with a $Rbar{3}c$ symmetry are energetically unfavorable, they do not show soft phonons and therefore are dynamically stable. A pressure-induced structural phase transition from $R3c$ to $Pnma$ for LiOsO$_3$ is predicted, whereas for NaOsO$_3$ no symmetry change is discerned in the considered pressure range.
Motivated by the puzzling report of the observation of a ferromagnetic insulating state in LaMnO$_3$/SrTiO$_3$ heterostructures, we calculate the electronic and magnetic state of LaMnO$_3$, coherently matched to a SrTiO$_3$ square substrate within a strained-bulk geometry. We employ three different density functional theory based computational approaches: (a) density functional theory (DFT) supplemented with Hubbard U (DFT+U), (b) DFT + dynamical mean field theory (DMFT), and (c) a hybrid functional treatment of the exchange-correlation functional. While the first two approaches include local correlations and exchange at Mn sites, treated in a static and dynamic manner, respectively, the last one takes into account the effect of non-local exchange at all sites. We find in all three approaches that the compressive strain induced by the square substrate of SrTiO$_3$ turns LaMnO$_3$ from an antiferromagnet with sizable orbital polarization to a ferromagnet with suppressed Jahn-Teller distortion in agreement with experiment. However, while both DFT+U and DFT+DMFT provide a metallic solution, only the hybrid calculations result in an insulating solution, as observed in experiment. This insulating behavior is found to originate from an electronic charge disproportionation. Our conclusions remain valid when we investigate LaMnO$_3$/SrTiO$_3$ within the experimental set-up of a superlattice geometry using DFT+U and hybrid calculations.