Do you want to publish a course? Click here

Comparative ab initio study of the structural, electronic, magnetic, and dynamical properties of LiOsO$_3$ and NaOsO$_3$

165   0   0.0 ( 0 )
 Added by Peitao Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite similar chemical compositions, LiOsO$_3$ and NaOsO$_3$ exhibit remarkably distinct structural, electronic, magnetic, and spectroscopic properties. At low temperature, LiOsO$_3$ is a polar bad metal with a rhombohedral $R3c$ structure without the presence of long-range magnetic order, whereas NaOsO$_3$ is a $G$-type antiferromagnetic insulator with an orthorhombic $Pnma$ structure. By means of comparative first-principles DFT+$U$ calculations with the inclusion of the spin-orbit coupling, we ($i$) identify the origin of the different structural ($R3c$ vs. $Pnma$) properties using a symmetry-adapted soft mode analysis, ($ii$) provide evidence that all considered exchange-correlation functionals (LDA, PBE, PBEsol, SCAN, and HSE06) and the spin disordered polymorphous descriptions are unsatisfactory to accurately describe the electronic and magnetic properties of both systems simultaneously, and ($iii$) clarify that the distinct electronic (metallic vs. insulating) properties originates mainly from a cooperative steric and magnetic effect. Finally, we find that although at ambient pressure LiOsO$_3$ with a $Pnma$ symmetry and NaOsO$_3$ with a $Rbar{3}c$ symmetry are energetically unfavorable, they do not show soft phonons and therefore are dynamically stable. A pressure-induced structural phase transition from $R3c$ to $Pnma$ for LiOsO$_3$ is predicted, whereas for NaOsO$_3$ no symmetry change is discerned in the considered pressure range.



rate research

Read More

Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe atoms in FeGa3 is not an intrinsic property of FeGa3, but is primarily due to the presence of disorder, defects, grain boundaries etc that break the symmetry about the Fe dimers. Analysis of the results obtained from magnetic measurements, photoelectron spectroscopy, Fe K-edge X-ray absorption near edge spectroscopy and ab-initio calculations clearly indicates that, the effects of on-site Coulomb repulsion between the Fe 3d electrons do not play any role in determining the electronic and magnetic properties of FeGa3. Detailed analysis of results of single crystal and poycrystalline FeGa3, helps to resolve the discrepancy in the electronic and magnetic properties in FeGa3 existing in the literature, consistently.
We present results of a study of small stoichiometric $Cd_{n}Te_{n}$ ($1{leq}n{leq}6$) clusters and few medium sized non-stoichiometric $Cd_{m}Te_{n}$ [($m,n= 13, 16, 19$); ($m{ eq}n$)] clusters using the Density Functional formalism and projector augmented wave method within the generalized gradient approximation. Structural properties {it viz.} geometry, bond length, symmetry and electronic properties like HOMO-LUMO gap, binding energy, ionization potential and nature of bonding {it etc.} have been analyzed. Medium sized non-stoichiometric clusters were considered as fragments of the bulk with T{$_{d}$} symmetry. It was observed that upon relaxation, the symmetry changes for the Cd rich clusters whereas the Te rich clusters retain their symmetry. The Cd rich clusters develop a HOMO-LUMO gap due to relaxation whereas there is no change in the HOMO-LUMO gap of the Te rich clusters. Thus, the symmetry of a cluster seems to be an important factor in determining the HOMO-LUMO gap.
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon spectra of the 3D bulk and the single-layer 2D structure, for both the high- and low-temperature crystal structures. Our results are in good agreement with existing experimental measurements and serve as a guide for additional investigations to elucidate the physics of this interesting material.
In a recent publication (S. Dong et al., Phys. Rev. Lett.103, 127201 (2009)), two (related) mechanisms were proposed to understand the intrinsic exchange bias present in oxides heterostructures involving G-type antiferromagnetic perovskites. The first mechanism is driven by the Dzyaloshinskii-Moriya interaction, which is a spin-orbit coupling effect. The second is induced by the ferroelectric polarization, and it is only active in heterostructures involving multiferroics. Using the SrRuO$_3$/SrMnO$_3$ superlattice as a model system, density-functional calculations are here performed to verify the two proposals. This proof-of-principle calculation provides convincing evidence that qualitatively supports both proposals.
Equilibrium crystal structures, electron band dispersions and band gap values of layered GaSe and InSe semiconductors, each being represented by four polytypes, are studied via first-principles calculations within the density functional theory (DFT). A number of practical algorithms to take into account dispersion interactions are tested, from empirical Grimme corrections to many-body dispersion schemes. Due to the utmost technical accuracy achieved in the calculations, nearly degenerate energy-volume curves of different polytypes are resolved, and the conclusions concerning the relative stability of competing polytypes drawn. The predictions are done as for how the equilibrium between different polytypes will be shifted under the effect of hydrostatic pressure. The band structures are inspected under the angle of identifying features specific for different polytypes, and with respect to modifications of the band dispersions brought about by the use of modified Becke-Johnson (mBJ) scheme for the exchange-correlation (XC) potential. As another way to improve the predictions of band gaps values, hybrid functional calculations according to the HSE06 scheme are performed for the band structures, and the relation with the mBJ results discussed. Both methods nicely agree with experimental results and with state-of-the-art GW calculations. Some discrepancies are identified in cases of close competition between the direct and indirect gap (e.g., in GaSe); moreover, the accurate placement of bands revealing relatively localized states is slightly different according to mBJ and HSE06 schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا