We discuss the reliability of available methods to constrain the location of the QCD critical endpoint with lattice simulations. In particular we calculate the baryon fluctuations up to $chi^B_8$ using simulations at imaginary chemical potentials. We argue that they contain no hint of criticality.
We report Lee-Yang zeros behavior at finite temperature and density. The quark number densities, <n>, are calculated at the pure imaginary chemical potential, where no sign problem occurs. Then, the canonical partition functions, Z_C(n,T,V), up to some maximal values of n are estimated through fitting theoretically motivated functions to <n>, which are used to compute the Lee-Yang zeros. We study the temperature dependence of the distributions of the Lee-Yang zeros around the pseudo-critical temperature region T/T_c = 0.84 - 1.35. In the distributions of the Lee-Yang zeros, we observe the Roberge-Weiss phase transition at T/T_c >= 1.20. We discuss the dependence of the behaviors of Lee-Yang zeros on the maximal value of n, so that we can estimate a reliable infinite volume limit.
We explore three-nucleon forces (3NF) from lattice QCD simulations. Utilizing the Nambu-Bethe-Salpeter (NBS) wave function, two-nucleon forces (2NF) and 3NF are determined on the same footing. Quantum numbers of the three-nucleon (3N) system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel). The enormous computational cost is reduced by employing the simplest geometrical configuration, where 3N are aligned linearly with an equal spacing. We perform lattice QCD simulations using Nf=2 dynamical clover fermion configurations generated by CP-PACS Collaboration, at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m(pi) = 1.13 GeV. Repulsive 3NF is found at short distance.
The theory of quantum chromodynamics (QCD) encodes the strong interactions that bind quarks and gluons into nucleons and that bind nucleons into nuclei. Predictive control of QCD would allow nuclear structure and reactions as well as properties of supernovae and neutron stars to be theoretically studied from first principles. Lattice QCD can represent generic QCD predictions in terms of well-defined path integrals, but the sign and signal-to-noise problems have obstructed lattice QCD calculations of large nuclei and nuclear matter in practice. This thesis presents a statistical study of lattice QCD correlation functions, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in baryon correlation functions is demonstrated to arise from a sign problem associated with Monte Carlo sampling of complex correlation functions. The phases of complex correlation functions are analyzed in the framework of circular statistics, and the time evolution of the phase is shown to resemble a heavy-tailed random walk on the unit circle. Building on these observations, a new technique called phase reweighting is investigated that involves calculations of phase differences over fixed-length time intervals. Phase reweighting allows results for hadronic observables to be extracted from large-time correlation functions with constant signal-to-noise ratios. The signal-to-noise problem re-emerges as the length of the phase-difference interval is increased. Applications of phase reweighting to meson, baryon, and two-baryon systems are discussed.
We consider recent progress in algorithms for generating gauge field configurations that include the dynamical effects of light fermions. We survey what has been achieved in recent state-of-the-art computations, and examine the trade-offs between performance and control of systematic errors. We briefly review the use of polynomial and rational approximations in Hybrid Monte Carlo algorithms, and some of the theory of on-shell chiral fermions on the lattice. This provides a theoretical framework within which we compare algorithmic alternatives for their implementation; and again we examine the trade-offs between speed and error control.