No Arabic abstract
The Maunakea Spectroscopic Explorer (MSE) is a next-generation observatory, designed to provide highly multiplexed, multi-object spectroscopy over a wide field of view. The observatory will consist of (1) a telescope with an 11.25 m aperture, (2) a 1.5 square-degree science field of view, (3) fibre optic positioning and transmission systems, and (4) a suite of low (R=3000), moderate (R=6000) and high resolution (R=40,000) spectrographs. The Fibre Transmission System (FiTS) consists of 4332 optical fibres, designed to transmit the light from the telescope prime focus to the dedicated spectrographs. The ambitious science goals of MSE require the Fibre Transmission System to deliver performance well beyond the current state of the art for multi-fibre systems, e.g., the sensitivity to observe magnitude 24 objects over a very broad wavelength range (0.37 - 1.8 microns) while achieving relative spectrophotometric accuracy of <3% and radial velocity precision of 20 km/s.
In this article, we first provide a brief overview of optical transmission systems and some of their performance specifications. We then present a simple, robust, and bandwidth-efficient OFDM synchronization method, and carry out measurements to validate the presented synchronization method with the aid of an experimental setup.
The first stage of the construction of the deep underwater neutrino telescope Baikal-GVD is planned to be completed in 2024. The second stage of the detector deployment is planned to be carried out using a data acquisition system based on fibre optic technologies, which will allow for increased data throughput and more flexible trigger conditions. A dedicated test facility has been built and deployed at the Baikal-GVD site to test the new technological solutions. We present the principles of operation and results of tests of the new data acquisition system.
In this paper we present the Australian Astronomical Observatorys concept design for Sphinx - a fiber positioned with 4332 spines on a 7.77mm pitch for CFHTs Mauna Kea Spectroscopic Explorer (MSE) Telescope. Based on the Echidna technology used with FMOS (on Subaru) and 4MOST (on VISTA), the next evolution of the tilting spine design delivers improved performance and superior allocation efficiency. Several prototypes have been constructed that demonstrate the suitability of the new design for MSE. Results of prototype testing are presented, along with an analysis of the impact of tilting spines on the overall survey efficiency. The Sphinx fiber positioned utilizes a novel metrology system for spine position feedback. The metrology design and the careful considerations required to achieve reliable, high accuracy measurements of all fibres in a realistic telescope environment are also presented.
Astronomical images and datasets are increasingly high-resolution and multi-dimensional. The vast majority of astronomers perform all of their visualisation and analysis tasks on low-resolution, two-dimensional desktop monitors. If there were no technological barriers to designing the ultimate stereoscopic display for astronomy, what would it look like? What capabilities would we require of our compute hardware to drive it? And are existing technologies even close to providing a true 3D experience that is compatible with the depth resolution of human stereoscopic vision? We consider the CAVE2 (an 80 Megapixel, hybrid 2D and 3D virtual reality environment directly integrated with a 100 Tflop/s GPU-powered supercomputer) and the Oculus Rift (a low- cost, head-mounted display) as examples at opposite financial ends of the immersive display spectrum.
The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope to a 10m class dedicated multi-object spectroscopic facility, with an ability to measure thousands of objects with three spectral resolution modes respectively low resolution of R~3,000, moderate resolution of R~6,000 and high resolution of R~40,000. Two identical multi-object high resolution spectrographs are expected to simultaneously produce 1084 spectra with high resolution of 40,000 at Blue (401-416nm) and Green (472-489nm) channels, and 20,000 at Red (626-674nm) channel. At the Conceptual Design Phase (CoDP), different optical schemes were proposed to meet the challenging requirements, especially a unique design with a novel transmission image slicer array, and another conventional design with oversize Volume Phase Holographic (VPH) gratings. It became clear during the CoDP that both designs presented problems of complexity or feasibility of manufacture, especially high line density disperser (general name for all kinds of grating, grism, prism). At the present, a new design scheme is proposed for investigating the optimal way to reduce technical risk and get more reliable estimation of cost and timescale. It contains new dispersers, F/2 fast collimator and so on. Therein, the disperser takes advantage of a special grism and a prism to reduce line density on grating surface, keep wide opening angle of optical path, and get the similar spectrum layout in all three spectral channels. For the fast collimator, it carefully compares on-axis and off-axis designs in throughput, interface to fiber assembly and technical risks. The current progress is more competitive and credible than the previous design, but it also indicates more challenging work will be done to improve its accessibility in engineering.