Do you want to publish a course? Click here

Entanglement guided search for parent Hamiltonians

80   0   0.0 ( 0 )
 Added by Tiago Mendes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a method for the search of parent Hamiltonians of input wave-functions based on the structure of their reduced density matrix. The two key elements of our recipe are an ansatz on the relation between reduced density matrix and parent Hamiltonian that is exact at the field theory level, and a minimization procedure on the space of relative entropies, which is particularly convenient due to its convexity. As examples, we show how our method correctly reconstructs the parent Hamiltonian correspondent to several non-trivial ground state wave functions, including conformal and symmetry-protected-topological phases, and quantum critical points of two-dimensional antiferromagnets described by strongly coupled field theories. Our results show the entanglement structure of ground state wave-functions considerably simplifies the search for parent Hamiltonians.



rate research

Read More

Given a generic time-dependent many-body quantum state, we determine the associated parent Hamiltonian. This procedure may require, in general, interactions of any sort. Enforcing the requirement of a fixed set of engineerable Hamiltonians, we find the optimal Hamiltonian once a set of realistic elementary interactions is defined. We provide three examples of this approach. We first apply the optimization protocol to the ground states of the one-dimensional Ising model and a ferromagnetic $p$-spin model but with time-dependent coefficients. We also consider a time-dependent state that interpolates between a product state and the ground state of a $p$-spin model. We determine the time-dependent optimal parent Hamiltonian for these states and analyze the capability of this Hamiltonian of generating the state evolution. Finally, we discuss the connections of our approach to shortcuts to adiabaticity.
In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body physics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an area law behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.
In this work, we consider a model of a subsystem interacting with a reservoir and study dynamics of entanglement assuming that the overall time-evolution is governed by non-integrable Hamiltonians. We also compare to an ensemble of Integrable Hamiltonians. To do this, we make use of unitary invariant ensembles of random matrices with either Wigner-Dyson or Poissonian distributions of energy. Using the theory of Weingarten functions, we derive universal average time evolution of the reduced density matrix and the purity and compare these results with several physical Hamiltonians: randomiz
70 - Andreas Osterloh 2015
An algorithm is proposed that serves to handle full rank density matrices, when coming from a lower rank method to compute the convex-roof. This is in order to calculate an upper bound for any polynomial SL invariant multipartite entanglement measure E. Here, it is exemplifyed how this algorithm works, based on a method for calculating convex-roofs of rank two density matrices. It iteratively considers the decompositions of the density matrix into two states each, exploiting the knowledge for the rank-two case. The algorithm is therefore quasi exact as far as the two rank case is concerned, and it also gives hints where it should include more states in the decomposition of the density matrix. Focusing on the threetangle, I show the results the algorithm gives for two states, one of which being the $GHZ$-Werner state, for which the exact convex roof is known. It overestimates the threetangle in the state, thereby giving insight into the optimal decomposition the $GHZ$-Werner state has. As a proof of principle, I have run the algorithm for the threetangle on the transverse quantum Ising model. I give qualitative and quantitative arguments why the convex roof should be close to the upper bound found here.
We study t Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on conformal data are derived. An ansatz class allowing for optimization of MERA with an anomalous symmetry is introduced. We utilize this class to numerically study a family of Hamiltonians with a symmetric critical line. Conformal data is obtained for all irreducible projective representations of each anomalous symmetry twist, corresponding to definite topological sectors. It is numerically demonstrated that this line is a protected gapless phase. Finally, we implement a duality transformation between a pair of critical lines using our subclass of MERA.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا