Do you want to publish a course? Click here

Turbulent channel flow of an elastoviscoplastic fluid

195   0   0.0 ( 0 )
 Added by Marco Edoardo Rosti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present numerical simulations of laminar and turbulent channel flow of an elastoviscoplastic fluid. The non-Newtonian flow is simulated by solving the full incompressible Navier-Stokes equations coupled with the evolution equation for the elastoviscoplastic stress tensor. The laminar simulations are carried out for a wide range of Reynolds numbers, Bingham numbers and ratios of the fluid and total viscosity, while the turbulent flow simulations are performed at a fixed bulk Reynolds number equal to 2800 and weak elasticity. We show that in the laminar flow regime the friction factor increases monotonically with the Bingham number (yield stress) and decreases with the viscosity ratio, while in the turbulent regime the the friction factor is almost independent of the viscosity ratio and decreases with the Bingham number, until the flow eventually returns to a fully laminar condition for large enough yield stresses. Three main regimes are found in the turbulent case, depending on the Bingham number: for low values, the friction Reynolds number and the turbulent flow statistics only slightly differ from those of a Newtonian fluid; for intermediate values of the Bingham number, the fluctuations increase and the inertial equilibrium range is lost. Finally, for higher values the flow completely laminarises. These different behaviors are associated with a progressive increases of the volume where the fluid is not yielded, growing from the centerline towards the walls as the Bingham number increases. The unyielded region interacts with the near-wall structures, forming preferentially above the high speed streaks. In particular, the near-wall streaks and the associated quasi-streamwise vortices are strongly enhanced in an highly elastoviscoplastic fluid and the flow becomes more correlated in the streamwise direction.



rate research

Read More

We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the material behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.
Turbulence modeling is a classical approach to address the multiscale nature of fluid turbulence. Instead of resolving all scales of motion, which is currently mathematically and numerically intractable, reduced models that capture the large-scale behavior are derived. One of the most popular reduced models is the Reynolds averaged Navier-Stokes (RANS) equations. The goal is to solve the RANS equations for the mean velocity and pressure field. However, the RANS equations contain a term called the Reynolds stress tensor, which is not known in terms of the mean velocity field. Many RANS turbulence models have been proposed to model the Reynolds stress tensor in terms of the mean velocity field, but are usually not suitably general for all flow fields of interest. Data-driven turbulence models have recently garnered considerable attention and have been rapidly developed. In a seminal work, Ling et al (2016) developed the tensor basis neural network (TBNN), which was used to learn a general Galilean invariant model for the Reynolds stress tensor. The TBNN was applied to a variety of flow fields with encouraging results. In the present study, the TBNN is applied to the turbulent channel flow. Its performance is compared with classical turbulence models as well as a neural network model that does not preserve Galilean invariance. A sensitivity study on the TBNN reveals that the network attempts to adjust to the dataset, but is limited by the mathematical form that guarantees Galilean invariance.
145 - Faranggis Bagheri 2010
We present direct numerical simulations of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate the probability distribution function (PDF) of finite-time Lyapunov exponents and from them the corresponding Cramers function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number $Wi <1$) and the FENE model. We use the location of the minima of the Cramers function to define the Weissenberg number precisely such that we observe coil-stretch transition at $Wiapprox1$. We find agreement with earlier analytical predictions for PDF of polymer extensions made by Balkovsky, Fouxon and Lebedev [Phys. Rev. Lett., 84, 4765 (2000).] for linear polymers (Oldroyd-B model) with $Wi<1$ and by Chertkov [Phys. Rev. Lett., 84, 4761 (2000).] for nonlinear FENE-P model of polymers. For $Wi>1$ (FENE model) the polymer are significantly more stretched near the wall than at the center of the channel where the flow is closer to homogenous isotropic turbulence. Furthermore near the wall the polymers show a strong tendency to orient along the stream-wise direction of the flow but near the centerline the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows.
An extension of Proper Orthogonal Decomposition is applied to the wall layer of a turbulent channel flow (Re {tau} = 590), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the igenfunctions are associated with individual wavenumbers and frequencies. Self-similarity of the dominant eigenfunctions, consistent with wall-attached structures transferring energy into the core region, is established. The most energetic modes are characterized by a fundamental time scale in the range 200-300 viscous wall units. The full spatio-temporal decomposition provides a natural measure of the convection velocity of structures, with a characteristic value of 12 u {tau} in the wall layer. Finally, we show that the energy budget can be split into specific contributions for each mode, which provides a closed-form expression for nonlinear effects.
Turbulent flows under transcritical conditions are present in regenerative cooling systems of rocker engines and extraction processes in chemical engineering. The turbulent flows and the corresponding heat transfer phenomena in these complex processes are still not well understood experimentally and numerically. The objective of this work is to investigate the turbulent flows under transcritical conditions using DNS of turbulent channel flows. A fully compressible solver is used in conjunction with a Peng-Robinson real-fluid equation of state to describe the transcritical flows. A channel flow with two isothermal walls is simulated with one heated and one cooled boundary layers. The grid resolution adopted in this study is slightly finer than that required for DNS of incompressible channel flows. The simulations are conducted using both fully (FC) and quasi-conservative (QC) schemes to assess their performance for transcritical wall-bounded flows. The instantaneous flows and the statistics are analyzed and compared with the canonical theories. It is found that results from both FC and QC schemes qualitatively agree well with noticeable difference near the top heated wall, where spurious oscillations in velocity can be observed. Using the DNS data, we then examine the usefulness of Townsend attached eddy hypothesis in the context of flows at transcritical conditions. It is shown that the streamwise energy spectrum exhibits the inverse wavenumber scaling and that the streamwise velocity structure function follows a logarithmic scaling, thus providing support to the attached eddy model at transcritical conditions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا