No Arabic abstract
Interferometric arrays seeking to measure the 21 cm signal from the Epoch of Reionization must contend with overwhelmingly bright emission from foreground sources. Accurate recovery of the 21 cm signal will require precise calibration of the array, and several new avenues for calibration have been pursued in recent years, including methods using redundancy in the antenna configuration. The newly upgraded Phase II of Murchison Widefield Array (MWA) is the first interferometer that has large numbers of redundant baselines while retaining good instantaneous UV-coverage. This array therefore provides a unique opportunity to compare redundant calibration with sky-model based algorithms. In this paper, we present the first results from comparing both calibration approaches with MWA Phase II observations. For redundant calibration, we use the package OMNICAL, and produce sky-based calibration solutions with the analysis package Fast Holographic Deconvolution (FHD). There are three principal results. (1) We report the success of OMNICAL on observations of ORBComm satellites, showing substantial agreement between redundant visibility measurements after calibration. (2) We directly compare OMNICAL calibration solutions with those from FHD, and demonstrate these two different calibration schemes give extremely similar results. (3) We explore improved calibration by combining OMNICAL and FHD. We evaluate these combined methods using power spectrum techniques developed for EoR analysis and find evidence for marginal improvements mitigating artifacts in the power spectrum. These results are likely limited by signal-to-noise in the six hours of data used, but suggest future directions for combining these two calibration schemes.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Arrays (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in cite{Li_2018} and cite{Wenyang_2019} studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the power spectrum from tandem calibration are significant. To understand this result, we analyze both the calibration solutions themselves and the effects on the power spectrum over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model-incompleteness error.
The Murchison Widefield Array is a low-frequency Square Kilometre Array precursor located at the Murchison Radio-astronomy Observatory in Western Australia. Primarily designed as an imaging telescope, but with a flexible signal path, the capabilities of this telescope have recently been extended to include off-line incoherent and tied-array beam formation using recorded antenna voltages. This has provided the capability for high-time and frequency resolution observations, including a pulsar science program. This paper describes the algorithms and pipeline that we have developed to form the tied array beam products from the summation of calibrated signals of the antenna elements, and presents example polarimetric profiles for PSRs J0437-4715 and J1900-2600 at 185 MHz.
Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.
In 21 cm cosmology, precision calibration is key to the separation of the neutral hydrogen signal from very bright but spectrally-smooth astrophysical foregrounds. The Hydrogen Epoch of Reionization Array (HERA), an interferometer specialized for 21 cm cosmology and now under construction in South Africa, was designed to be largely calibrated using the self-consistency of repeated measurements of the same interferometric modes. This technique, known as redundant-baseline calibration resolves most of the internal degrees of freedom in the calibration problem. It assumes, however, on antenna elements with identical primary beams placed precisely on a redundant grid. In this work, we review the detailed implementation of the algorithms enabling redundant-baseline calibration and report results with HERA data. We quantify the effects of real-world non-redundancy and how they compare to the idealized scenario in which redundant measurements differ only in their noise realizations. Finally, we study how non-redundancy can produce spurious temporal structure in our calibration solutions--both in data and in simulations--and present strategies for mitigating that structure.
The compact configuration of Phase II of the Murchison Widefield Array (MWA) consists of both a redundant subarray and pseudo-random baselines, offering unique opportunities to perform sky-model and redundant interferometric calibration. The highly redundant hexagonal cores give improved power spectrum sensitivity. In this paper, we present the analysis of nearly 40 hours of data targeting one of the MWAs EoR fields observed in 2016. We use both improved analysis techniques presented in Barry et al. (2019) as well as several additional techniques developed for this work, including data quality control methods and interferometric calibration approaches. We show the EoR power spectrum limits at redshift 6.5, 6.8 and 7.1 based on our deep analysis on this 40-hour data set. These limits span a range in $k$ space of $0.18$ $h$ $mathrm{Mpc^{-1}}$ $<k<1.6$ $h$ $mathrm{Mpc^{-1}}$, with a lowest measurement of $Delta^2leqslant2.39times 10^3$ $mathrm{mK}^2$ at $k=0.59$ $h$ $mathrm{Mpc^{-1}}$ and $z=6.5$.