Do you want to publish a course? Click here

The remarkable underlying ground states of cuprate superconductors

65   0   0.0 ( 0 )
 Added by Cyril Proust
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cuprates exhibit exceptionally strong superconductivity. To understand why, it is essential to elucidate the nature of the electronic interactions that cause pairing. Superconductivity occurs on the backdrop of several underlying electronic phases, including a doped Mott insulator at low doping, a strange metal at high doping, and an enigmatic pseudogap phase in between -- inside which a phase of charge-density-wave order appears. In this Article, we aim to shed light on the nature of these remarkable phases by focusing on the limit as $T to 0$, where experimental signatures and theoretical statements become sharper. We therefore survey the ground state properties of cuprates once superconductivity has been removed by the application of a magnetic field, and distill their key universal features.



rate research

Read More

Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spin-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa$_2$Cu$_3$O$_{6+x}$ compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.
217 - J. W. Mei , Z. Y. Weng 2009
We identify a new kind of elementary excitations, spin-rotons, in the doped Mott insulator. They play a central role in deciding the superconducting transition temperature Tc, resulting in a simple Tc formula,Tc=Eg/6, with Eg as the characteristic energy scale of the spin rotons. We show that the degenerate S=1 and S=0 rotons can be probed by neutron scattering and Raman scattering measurements, respectively, in good agreement with the magnetic resonancelike mode and the Raman A1g mode observed in the high-Tc cuprates.
A model of charged hole-pair bosons, with long range Coulomb interactions and very weak interlayer coupling, is used to calculate the order parameter -Phi- of underdoped cuprates. Model parameters are extracted from experimental superfluid densities and plasma frequencies. The temperature dependence -Phi(T)- is characterized by a trapezoidal shape. At low temperatures, it declines slowly due to harmonic phase fluctuations which are suppressed by anisotropic plasma gaps. Above the single layer Berezinski-Kosterlitz-Thouless (BKT) temperature, Phi(T) falls rapidly toward the three dimensional transition temperature. The theoretical curves are compared to c-axis superfluid density data by H. Kitano et al., (J. Low Temp. Phys. 117, 1241 (1999)) and to the -transverse nodal velocity- measured by angular resolved photoemmission spectra on BSCCO samples by W.S. Lee et al., (Nature 450, 81 (2007)), and by A. Kanigel, et al., (Phys. Rev. Lett. 99, 157001 (2007)).
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lambda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.
In a multiorbital model of the cuprate high-temperature superconductors soft antiferromagnetic (AF) modes are assumed to reconstruct the Fermi surface to form nodal pockets. The subsequent charge ordering transition leads to a phase with a spatially modulated transfer of charge between neighboring oxygen p_x and p_y orbitals and also weak modulations of the charge density on the copper d_{x^2-y^2} orbitals. As a prime result of the AF Fermi surface reconstruction, the wavevectors of the charge modulations are oriented along the crystalline axes with a periodicity that agrees quantitatively with experiments. This resolves a discrepancy between experiments, which find axial order, and previous theoretical calculations, which find modulation wavevectors along the Brillouin zone (BZ) diagonal. The axial order is stabilized by hopping processes via the Cu4s orbital, which is commonly not included in model analyses of cuprate superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا