Do you want to publish a course? Click here

VERITAS observations of the BL Lac object TXS 0506+056

249   0   0.0 ( 0 )
 Added by Marcos Santander
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event icnu, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar txs~(3FGL J0509.4+0541), which was in an elevated gamma-ray emission state as measured by the emph{Fermi} satellite. VERITAS observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E $>$ 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+056 was detected by VERITAS with a significance of 5.8 standard deviations ($sigma$) in the full 35-hour data set. The average photon flux of the source during this period was $(8.9 pm 1.6) times 10^{-12} ; mathrm{cm}^{-2} , mathrm{s}^{-1}$, or 1.6% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of $4.8 pm 1.3$.



rate research

Read More

We present evidence that TXS 0506+056, the first plausible non-stellar neutrino source, despite appearances, is not a blazar of the BL Lac type but is instead a masquerading BL Lac, i.e., intrinsically a flat-spectrum radio quasar with hidden broad lines and a standard accretion disk. This re-classification is based on: (1) its radio and O II luminosities; (2) its emission line ratios; (3) its Eddington ratio. We also point out that the synchrotron peak frequency of TXS 0506+056 is more than two orders of magnitude larger than expected by the so-called blazar sequence, a scenario which has been assumed by some theoretical models predicting neutrino (and cosmic-ray) emission from blazars. Finally, we comment on the theoretical implications this re-classification has on the location of the $gamma$-ray emitting region and our understanding of neutrino emission in blazars.
151 - E. Aliu , A. Archer , T. Aune 2014
We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560,GeV, is well described by a power law with a spectral index of $4.33 pm 0.09$. The time-averaged integral flux above $200,$GeV measured for this period was $(1.69 pm 0.06) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$, corresponding to 6.9% of the Crab Nebula flux. We also present the combined $gamma$-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100~MeV to 560~GeV. The data are well fit by a power law with an exponential cutoff at $rm {101.9 pm 3.2 , mathrm{GeV}} $. The origin of the cutoff could be intrinsic to PG~1553+113 or be due to the $gamma$-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of $rm z egthinspace > egthinspace 0.395$ based on optical/UV observations of PG~1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of $z egthinspace leq egthinspace 0.62$. A strongly-elevated mean flux of $(2.50 pm 0.14) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$ (10.3% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as $(4.44 pm 0.71) times 10^{-11} , mathrm{ph} , mathrm{cm}^{-2} , mathrm{s}^{-1}$ (18.3% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a $chi^2$ probability for a steady flux of 0.03%.
109 - M. Cerruti , A. Zech , C. Boisson 2018
While blazars have long been one of the candidates in the search for the origin of ultra-high energy cosmic rays and astrophysical neutrinos, the BL Lac object TXS 0506+056 is the first extragalactic source that is correlated with some confidence with a high-energy neutrino event recorded with IceCube. At the time of the IceCube event, the source was found in a high state in gamma-rays with Fermi-LAT and MAGIC. We have explored in detail the parameter space of a lepto-hadronic radiative model, assuming a single emitting region inside the relativistic jet. We present the complete range of possible solutions for the physical conditions of the emitting region and its particle population. For each solution we compute the expected neutrino rate, and discuss the impact of this event on our general understanding of emission processes in blazars.
The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with a statistical significance of 10.4 standard deviations (10.4 sigma) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34_stat +/- 0.2_sys. The integral flux is Phi(E > 200 GeV) = (12.2 +/- 2.6) X 10^-12 cm^-2 s^-1, which corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum has an index that is harder than Gamma = 2.32 +/- 0.37_stat. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37_stat.
For the first time since the discovery of high-energy cosmic neutrinos by IceCube, a multimessenger campaign identified a distant gamma ray blazar, TXS 0506+056, as the source of a high-energy neutrino. The extraordinary brightness of the blazar despite its distance suggests that it may belong to a special class of sources that produce cosmic rays. Moreover, over the last 10 years of data, the high-energy neutrino flux from the source is dominated by a previous neutrino flare in 2014, which implies that flaring sources strongly contribute to the cosmic ray flux. We investigate the contribution of this subclass of flaring blazars to the high-energy neutrino flux and examine its connection to the very high energy cosmic ray observations. We also study the high energy gamma ray emission accompanying the neutrino flare and show that the sources must be more efficient neutrino than gamma ray emitters. This conclusion is supported by the gamma-ray observations during the 2014 neutrino flare.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا