Do you want to publish a course? Click here

Gammas and neutrinos from TXS 0506+056

110   0   0.0 ( 0 )
 Added by Matteo Cerruti
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

While blazars have long been one of the candidates in the search for the origin of ultra-high energy cosmic rays and astrophysical neutrinos, the BL Lac object TXS 0506+056 is the first extragalactic source that is correlated with some confidence with a high-energy neutrino event recorded with IceCube. At the time of the IceCube event, the source was found in a high state in gamma-rays with Fermi-LAT and MAGIC. We have explored in detail the parameter space of a lepto-hadronic radiative model, assuming a single emitting region inside the relativistic jet. We present the complete range of possible solutions for the physical conditions of the emitting region and its particle population. For each solution we compute the expected neutrino rate, and discuss the impact of this event on our general understanding of emission processes in blazars.



rate research

Read More

The results of three different searches for neutrino candidates, associated with the IceCube-170922A event or from the direction of TXS 0506+056, by the ANTARES neutrino telescope are presented. The first search refers to the online follow-up of the IceCube alert; the second is based on the standard time-integrated method employed by the Collaboration to search for point-like neutrino sources; the third uses the information from the IceCube time-dependent analysis reporting a bursting activity centered on December 13, 2014, as input for an ANTARES time-dependent analysis. The online follow-up and the time-dependent analysis yield no events related to the source. The time-integrated study performed over a period from 2007 to 2017 fits 1.03 signal events, which corresponds to a p-value of 3.4% (not considering trial factors). Only for two other astrophysical objects in our candidate list, a smaller p-value had been found. When considering that 107 sources have been investigated, the post-trial p-value for TXS 0506+056 corresponds to 87%.
83 - Francis Halzen 2019
IceCube discovered a flux of cosmic neutrinos originating in extragalactic sources with an energy density close to that in gamma rays and cosmic rays. A multimessenger campaign triggered by the coincident observation of a gamma-ray flare and a 290-TeV IceCube neutrino pinpointed the cosmic-ray accelerator TXS 0506+056. Subsequently, the IceCube archival data revealed a 3-month burst of 13 cosmic neutrinos in 2014-15 that dominates the neutrino flux of the source over the 9.5 years of observations. The original identification of the source as a blazar was puzzling because it requires a major accretion event onto the rotating supermassive black hole to accommodate the neutrino burst. Subsequent high-resolution radio images of the source with the VLBA brought to light a merger of two galaxies, revealed by the interaction of two jets entangled in the source. Recently, the blazar PKS 1502+106 was found in the direction of a 300-TeV neutrino alert, IC-190730. OVRA radio observations at 15 GHz indicate that the neutrino also coincides with the highest flux density of a flare that started five years ago. This matches the similar long-term outburst seen from TXS 0506+056 and may indicate merger activity. Also, the dominant hotspot in the 10-year IceCube neutrino sky map, NGC 1068 (Messier 77), is a Seyfert galaxy undergoing a major accretion event onto the black hole. A few-percent fraction of such special sources, now labeled as gamma-ray blazars, is sufficient to accommodate the diffuse cosmic neutrino flux observed by IceCube. While rapid progress seems likely, the observations also convincingly make the case for the construction of more and larger neutrino telescopes with better angular resolution.
Motivated by the observation of a $>290$ TeV muon neutrino by IceCube, coincident with a $sim$6 month-long $gamma$-ray flare of the blazar TXS 0506+056, and an archival search which revealed $13 pm 5$ further, lower-energy neutrinos in the direction of the source in 2014-2015, we discuss the likely contribution of blazars to the diffuse high-energy neutrino intensity, the implications for neutrino emission from TXS 0506+056 based on multi-wavelength observations of the source, and a multi-zone model that allows for sufficient neutrino emission so as to reconcile the multi-wavelength cascade constraints with the neutrino emission seen by IceCube in the direction of TXS 0506+056.
Results of a search for ultra-high-energy neutrinos with the Pierre Auger Observatory from the direction of the blazar TXS 0506+056 are presented. They were obtained as part of the follow-up that stemmed from the detection of high-energy neutrinos and gamma rays with IceCube, textit{Fermi}-LAT, MAGIC, and other detectors of electromagnetic radiation in several bands. The Pierre Auger Observatory is sensitive to neutrinos in the energy range from 100 PeV to 100 EeV and in the zenith angle range from $theta=60^circ$ to $theta=95^circ$, where the zenith angle is measured from the vertical direction. No neutrinos from the direction of TXS 0506+056 have been found. The results were analyzed in three periods: One of 6 months around the detection of IceCube-170922A, coinciding with a flare period of TXS 0506+056, a second one of 110 days during which the IceCube collaboration found an excess of 13 neutrinos from a direction compatible with TXS 0506+056, and a third one from 2004 January 1 up to 2018 August 31, over which the Pierre Auger Observatory has been taking data. The sensitivity of the Observatory is addressed for different spectral indices by considering the fluxes that would induce a single expected event during the observation period. For indices compatible with those measured by the IceCube collaboration the expected number of neutrinos at the Observatory is well-below one. Spectral indices as hard as 1.5 would have to apply in this energy range to expect a single event to have been detected.
For the first time since the discovery of high-energy cosmic neutrinos by IceCube, a multimessenger campaign identified a distant gamma ray blazar, TXS 0506+056, as the source of a high-energy neutrino. The extraordinary brightness of the blazar despite its distance suggests that it may belong to a special class of sources that produce cosmic rays. Moreover, over the last 10 years of data, the high-energy neutrino flux from the source is dominated by a previous neutrino flare in 2014, which implies that flaring sources strongly contribute to the cosmic ray flux. We investigate the contribution of this subclass of flaring blazars to the high-energy neutrino flux and examine its connection to the very high energy cosmic ray observations. We also study the high energy gamma ray emission accompanying the neutrino flare and show that the sources must be more efficient neutrino than gamma ray emitters. This conclusion is supported by the gamma-ray observations during the 2014 neutrino flare.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا